
Telepítés

A rendszert elkészülte után a megrendelőnél üzembe kell helyezni

• A környezettel kapcsolatos feltételezések esetleg tévesek voltak;

• Az új rendszerrel szemben ellenállást tapasztalhatunk a befogadó oldalon;

• A rendszernek egy ideig esetleg együtt kell létezni más rendszerekkel;

• Fizikai problémák is felléphetnek a telepítés során (pl. kábelezési gondok);

• Az operátorok betanításról gondoskodni kell.

34

A rendszer evolúciója

Nagy rendszerek hosszú élettartamúak. Lépést kell tartani a változó
követelményekkel.

Az evolúció költséges!

• A változásokat technikai és üzleti szempontból is elemezni kell;

• Az alrendszerek egymásra hatása miatt nem várt problémák adódhatnak;

• Ritkán ismertek az eredeti tervezési megfontolások;

• A rendszer struktúrája sérül a folyamatos változtatások során.

Azon régebbi rendszer, amelynek fenntartása elengedhetetlen: legacy rendszer

35

Rendszerek leépítése

A rendszer működésből való kivonása annak hasznos élettartama után.

Szükséges lehet veszélyes, vagy környezetszennyező anyagok ártalmatlanítása.

• Már a rendszertervezés során ezt tervezni kell!

Szükség lehet adatkonverzióra más rendszerekben való felhasználás céljából.

36

Összefoglalás

Az ember-gép rendszerek tartalmaznak számítógépes hardvert, szoftvert,
valamint emberi kezelőket. Célja valamilyen üzleti cél elérésének segítése.

A globális eredő tulajdonságok a rendszer egészének működését jellemzik, nem
pedig valamelyik részegységét.

A rendszertervezés folyamata: specifikáció, tervezés, fejlesztés, integráció és
tesztelés. A rendszerintegráció és tesztelés különösen kritikus.

37

Verifikáció és validáció
(tesztelés „tudományos néven”)

38

Verifikáció:
„Jó minőségű terméket fejlesztünk?”
(Jól fejlesztünk?)

A szoftver teljesítse a specifikációt.

Validáció:
„A megfelelő terméket fejlesztjük?”
(Jót fejlesztünk?)

A szoftver azt csinálja, amit a felhasználó tényleg akar.

Bevezetés

39

A rendszerfejlesztés V-modellje

Követelmény-
specifikáció

Rendszer-
specifikáció

Rendszer-
tervezés

Részletes
tervezés

Részegységek
implementálása

és tesztelése

Működtetés Végteszt
Rendszer-
integráció

teszt

Alrendszer-
integráció

teszt

Végteszt-
terv

Rendszer-
integráció

tesztelési terve

Alrendszer-
integráció

tesztelési terve

40

V & V

Az egész életciklusra jellemző

• A V & V-t a szoftver fejlesztés minden lépésénél alkalmazni kell.

Két fő feladat:

• A rendszerbeli hibák felfedezése.

• Annak felmérése, hogy a rendszer hasznos-e és használható-e a felhasználási
környezetben.

A V & V eljárás

41

A V & V célja

A verifikáció és validáció a szoftver iránti bizalmi alapot teremt:

A szoftver el tudja látni a feladatát

NEM azt jelenti, hogy teljesen hibamentes.

Azt jelenti, hogy elég jó ahhoz, hogy ellássa feladatát.

(A feladat típusa határozza meg, milyen mértékű bizalom kell.)

42

A bizalmi szint

A rendszer céljától, a felhasználók elvárásaitól, valamint a piaci viszonyoktól
függ:

• a szoftver célja

• A bizalmi szint függ attól, hogy mennyire kritikus a szoftver a szervezet számára.

• felhasználó elvárások

• A felhasználóknak bizonyos szoftverekkel szemben nagyon alacsony elvárásaik vannak.

• piaci környezet

• A gyors piacra dobás fontosabb lehet, mint a hibák megtalálása.

43

A tesztelési és vizsgálati eljárások sikere érdekében körültekintő tervezésre van
szükség.

A tervezést már a fejlesztés korai fázisában el kell kezdeni.

A terv határozza meg a statikus vizsgálat és a tesztelés helyes egyensúlyát.

A V & V tervezése a tesztelési eljárás irányelveit fogalmazza meg, nem kell a
termék tesztelését itt leírni.

A V & V tervezése

44

A V&V terv
A tesztelő eljárás.

A tesztelési eljárás főbb fázisainak leírása.

Követelmények követhetősége.

A teszteket úgy kell megtervezni, hogy minden követelményt külön lehessen tesztelni.

Tesztelt elemek.

A fejlesztési eljárás azon elemeit specifikáljuk, amelyeket tesztelni kell.

A tesztelés menetrendje.

A tesztelés menetrendje a szükséges erőforrások foglalásával. Természetesen szorosan
kapcsolódik a teljes projekt ütemezéséhez.

A tesztek rögzítésének eljárása.

A teszteket nemcsak futtatni kell, hanem az eredményeket szisztematikusan rögzíteni is. A
tesztelési eljárásnak felülvizsgálhatónak kell lenni.

Hardver és szoftver szükségletek.

A szükséges szoftver eszközök listája a becsült hardver használattal együtt.

Kényszerek.

A tesztelési eljárást befolyásoló kényszerek, pl. munkaerő hiány.

45

A V&V két alapvető típusa

Szoftvervizsgálatok – statikus V&V

• Problémák feltárása a rendszer statikus reprezentációjának analízise segítségével.

(Kiegészíthető eszköz-alapú dokumentum- és forráskód-analízissel.)

Szoftvertesztelés – dinamikus V&V

• Kísérletezés és a termék viselkedésének megfigyelése.

(A rendszert teszt-adatokkal futtatva működés közben figyeljük a viselkedését.)

46

Statikus és dinamikus V&V

47

Követelmény
specifikáció

Magas-szintű
terv

Formális
specifikáió

Részletes terv
Program

kód

Prototípus Program

Szoftver
vizsgálat

Szoftver
tesztelés

Összefoglalás

A verifikáció és validáció nem ugyanazt jelenti.

A verifikáció a specifikáció teljesítését mutatja, a validáció pedig azt, hogy a
program kielégíti a felhasználó igényeit.

A tesztelési eljárást tesztelési tervek segítik, ezek elkészítése szükséges.

A statikus verifikációs technikák hibadetektálás céljából vizsgálják és analizálják
a programot.

A hibák felderítésének nagyon hasznos módja a szoftvervizsgálat.

A vizsgálat során hibakeresés céljából a programkódot egy kis létszámú csoport
szisztematikusan átvizsgálja.

48

Szoftvervizsgálatok
(statikus V&V)

49

Bevezetés

Emberek (gépek) vizsgálják a forrás valamilyen reprezentációját anomáliák és
hibák után kutatva.

A vizsgálathoz nem kell a rendszert futtatni, így implementáció előtt is
megtehető.

A rendszer bármely reprezentációja vizsgálható: követelmények, terv,
konfigurációs adatok, teszt adatok, stb.

50

Bevezetés

A reprezentáció felülvizsgálatának formális módszere

Célja kizárólag a hibák jelenlétének jelzése, (nem pedig javítása).

A hibák lehetnek (pl.)

• logikai hibák;

• anomáliák a kódban, amik hibás állapotot jelezhetnek (pl. nem inicializált változó);

• egyes szabványok nem teljesítése.

51

A szoftvervizsgálat típusai

Dokumentum átvilágítás

• Követelmények

• Felhasználói

• Rendszer

• Tervek

• Rendszer, alrendszer, modul

• Teszt

Program (forráskód) átvilágítás

Automatizált forráskód elemzés

Formális verifikáció

52

A vizsgálat előfeltételei

Precíz, teljes reprezentáció.

A csoport tagjainak ismerni kell a szervezet működési szabályait.

Szintaktikailag helyes kód, vagy valamilyen más rendszer-reprezentáció.

Egy hiba-ellenőrző listát kell készíteni.

A menedzsmentnek el kell fogadni, hogy a szoftver vizsgálat növeli a
költségeket.

A menedzsment ne használja a szoftver vizsgálatot a dolgozók értékelésére (pl.
ki hibázott).

53

A vizsgálat hatékonysága

Egyetlen vizsgálat több hibát is feltárhat. A tesztelés során egy hiba elfedhet
más hibákat, így ott többszöri végrehajtás kell.

Az újrafelhasználás és a programozói tapasztalat miatt a felülvizsgálók
valószínűleg találkoztak már a gyakran előforduló hibákkal.

54

Szoftver vizsgálatok és szoftver tesztelés

A vizsgálatok és a tesztelés egymást kiegészítő verifikációs technikák.

A vizsgálat ellenőrzi, hogy a specifikációnak megfelel-e, de azt nem, hogy a valós
felhasználói igényeket kielégíti-e.

A vizsgálatok nem tudják ellenőrizni a nem-funkcionális jellemzőket, pl.
teljesítmény, használhatóság, stb.

55

A vizsgálat folyamata

56

Tervezés

Áttekintés

Előkészületek

Vizsgálati
ülés

Átdolgozás

Követés

A vizsgálat folyamata

A rendszer ismertetése a felülvizsgáló csoport számára.

A csoport tagjai megkapják a kódot és az egyéb kapcsolódó dokumentumokat.

A vizsgálat megtörténik, a felfedezett hibákat feljegyzik.

A felfedezett hibák javítása érdekében a szükséges módosítások elvégzése.

Szükség esetén újabb vizsgálat.

57

Szerepek a vizsgálat során

58

Szerző vagy tulajdonos A programozó vagy tervező, aki a program vagy egyéb dokumentum
létrehozásáért felelős. Az ő felelőssége a vizsgálat során feltárt hibák javítása
is.

Vizsgáló Hibák, hiányosságok, inkonzisztenciák keresése a programokban és
dokumentációban. Esetleg a vizsgáló bizottság feladatkörén kívül álló
kérdéseket is felvethet.

Felolvasó A vizsgálati ülésen bemutatja a kódot vagy dokumentumot.

Írnok A vizsgálati ülés eredményeit rögzíti.

Elnök vagy moderátor Menedzseli és segíti a vizsgálat menetét. Az eredményeket a fő moderátornak
jelenti.

Fő moderátor A vizsgálati folyamat javításáért, a hiba-ellenőrző lista frissítéséért,
eszközökért, stb. felelős.

A vizsgálat típusai

Code review – egy vagy több (tapasztaltabb) programozó átnézi a kódot

Páros programozás – egyik programozó fejleszt, a másik „csak” figyel

Refactoring – már tesztelt, működő kód szerkezetének javítása

59

A vizsgálat típusai (folyt.)

Technical review

• teljesítmény optimalizálásra vagy nehezen megtalálható hibák felfedésére

• külső szakértői átvizsgálás / minősítés valamely tulajdonságra (pl. MEI, TÜV)

Inspekció

• szoftver teljes átvizsgálása (nem csak valamely tulajdonságra vagy funkcióra)

• külső szakértő

• hosszú idő (több hónap is lehet)

60

Ellenőrző listák

A gyakori hibákat tartalmazó ellenőrző lista használandó a vizsgálat
levezetésére.

A hiba-ellenőrző listák programnyelv-specifikusak és az adott programnyelv
karakterisztikus hibáit tartalmazzák.

Általában minél gyengébb a típus-ellenőrzés, annál hosszabb az ellenőrző lista.

Példák: inicializálás, konstansok elnevezése, kilépés hurokból, tömbhatár
túllépés, stb.

61

Ellenőrző lista 1

62

Adathibák Minden változó inicializálva van, mielőtt használnánk?

Az összes konstansnak van neve?

A tömbök felső indexe a tömb méretével egyenlő vagy ennél eggyel kisebb
kell legyen?

Karakter-tömbök használata esetén a delimiter egyértelműen definiálva van?

Előfordulhat-e buffer overflow?

Vezérlési hibák Minden feltételes utasításra: helyes a feltétel?

Minden ciklus biztosan befejeződik?

Az utasítás-blokkokat helyesen zárójeleztük?

Case utasításnál minden lehetőséget kimerítettünk?

Ha minden case utasítás után break kell, akkor ezek jelen vannak?

I/O hibák Minden bemenő változót használunk?

Minden kimeneti változónak adunk értéket visszatérés előtt?

Váratlan bementi adatok okozhatnak-e hibát?

Ellenőrző lista 2

63

Interfész hibák Minden függvény- és metódus-hívásnak megfelelő számú paramétere van?

A paraméter-típusok megfelelők?

A paraméterek sorrendje megfelelő?

Ha több komponens osztott memóriát használ, akkor ugyanolyan
struktúrájú memória-modellt használnak?

Tárolás-menedzsment hibák Láncolt szerkezetek módosítása esetén minden mutató megfelelően
módosítva van?

Dinamikus memóriahasználat esetén helyes-e az allokáció?

A nem használt memória explicit módon fel van-e szabadítva?

Kivétel-kezelési hibák Minden lehetséges hibalehetőség figyelembe lett véve?

A vizsgálat sebessége

500 utasítás/óra az áttekintés során.

125 forrás utasítás/óra az egyéni előkészületek alatt.

90-125 utasítás/óra vizsgálható az ülésen.

A vizsgálat drága!

Pl.: 500 sor megvizsgálása kb. 40 ember óra igényű, ami kb. 500 eFt.

Így is olcsóbb lehet, mint a komponens tesztelés.

64

Szoftvertesztelés
(dinamikus V&V)

65

A hibák jelenlétét és NEM hiányát jelezheti.

Az egyetlen V & V technika nem-funkcionális követelmények ellenőrzésére,
hiszen a szoftvert végre kell hajtani ahhoz, hogy lássuk, miként viselkedik.

Statikus ellenőrzéssel együtt célszerű használni, hogy teljes V&V lefedettséget
kapjunk.

Szoftvertesztelés

66

Csak a kimerítő teszteléssel deríthető ki, hogy a program hibamentes. De a
kimerítő tesztelés lehetetlen.

A tesztelési vezérelvek definiálják a tesztek kiválasztásának módját. Pl.:

• A menükön keresztül elérhető valamennyi funkciót le kell tesztelni;

• Az azonos menün keresztül elérhető funkciók kombinációit tesztelni kell;

• Ahol felhasználói bevitel van, minden funkciót ellenőrizni kell helyes és helytelen
adatokkal.

Tesztelési tanácsok

67

Tesztelési tanácsok (folyt.)

Ötletek a tesztelőknek: hogyan érdemes olyan teszteket választani, amelyek
kimutatják a rendszer hibáit.

• Olyan bemenetek választása, amelyek a rendszert hibaüzenetek (az összes!) generálására
kényszerítik;

• Olyan bemenetek tervezése, ami puffer túlcsorduláshoz vezethet;

• Ugyanazon bemenet vagy bemeneti sorozat többszöri ismétlése;

• Érvénytelen kimenetek kikényszerítése;

• Túl nagy vagy túl kicsi számítási eredmények kikényszerítése.

68

A szoftvertesztelés folyamata

69

Tesztterv

Tesztterv
készítése

Tesztesetek
tervezése

Teszt adatok
tervezése

Tesztek
végrehajtása

Eredmények
kiértékelése

Teszt
riport

Tesztesetek Teszt adatok
Teszt

eredmény

Tesztnapló

A szoftvertesztelés szintjei

Komponensteszt (fejlesztő)

• A teljes rendszer egy-egy komponensét teszteli önmagában

Integrációs teszt (fejlesztő)

• Komponensek közötti együttműködést teszteli

Rendszerteszt (független csoport)

• A teljes rendszert, azaz minden komponenst együtt tesztel

Átvételi teszt (független csoport)

• Felhasználói teszt, a már kész rendszeren

70

A szoftvertesztelés technikái

Fekete dobozos (black-box)

• specifikáció alapú tesztelés

• a tesztelő csak a specifikációt ismeri, a forráskódot nem

Fehér dobozos (white boksz)

• kód (struktúra) alapú tesztelés

• a tesztelő a specifikációt és a forráskódot is ismeri

71

