Telepites

A rendszert elkésziilte utan a megrendeldnél Gzembe kell helyezni
* Akornyezettel kapcsolatos feltételezések esetleg tévesek voltak;
Az Uj rendszerrel szemben ellenadllast tapasztalhatunk a befogadé oldalon;
A rendszernek egy ideig esetleg egyltt kell Iétezni mas rendszerekkel;
Fizikai problémdk is felléphetnek a telepités soran (pl. kdbelezési gondok);
Az operatorok betanitdsrdl gondoskodni kell.

A rendszer evolucidja

Nagy rendszerek hosszu élettartamuak. Lépést kell tartani a valtozé
kovetelményekkel.

Az evolucio koltséges!
* A valtozasokat technikai és tizleti szempontbdl is elemezni kell;
* Az alrendszerek egymasra hatdsa miatt nem vart problémak adédhatnak;
* Ritkan ismertek az eredeti tervezési megfontolasok;
* Arendszer strukturaja séril a folyamatos valtoztatasok soran.

Azon régebbi rendszer, amelynek fenntartasa elengedhetetlen: legacy rendszer

Rendszerek leépitése

A rendszer mikodésbol vald kivondsa annak hasznos élettartama utan.

Szikséges lehet veszélyes, vagy kdrnyezetszennyezd anyagok drtalmatlanitasa.
* Mar arendszertervezés soran ezt tervezni kell!

Szikség lehet adatkonverzidra mas rendszerekben vald felhasznalas céljabdl.

Osszefoglalds

Az ember-gép rendszerek tartalmaznak szamitogépes hardvert, szoftvert,
valamint emberi kezelOket. Célja valamilyen tzleti cél elérésének segitése.

A globalis eredo tulajdonsagok a rendszer egészének miikodését jellemzik, nem
pedig valamelyik részegységét.

A rendszertervezés folyamata: specifikacio, tervezés, fejlesztés, integracio és
tesztelés. Arendszerintegracio és tesztelés kilondsen kritikus.

Verifikacio és validacio

(tesztelés ,,tudomdanyos néven”)

Bevezetés

Verifikacid:
,,JO Mmin8ségli terméket fejlesztiink?”
(JAI fejlesztiink?)

A szoftver teljesitse a specifikaciot.

Validacio:
,yA megfeleld terméket fejlesztjik?”
(JOt fejlesztiink?)

A szoftver azt csindlja, amit a felhasznalod tényleg akar.

o P
* A 4

A rendszerfejlesztés V-modellje

Kovetelmény- Rendszer- Rendszer- Részletes
specifikacio specifikacio tervezés tervezés

Rendszer- Alrendszer-
integracio integracio
tesztelési terve tesztelési terve

Végteszt-

Rendszer- Alrendszer-
Mdkodtetés Végteszt integracio integracio
teszt teszt

Részegységek
implementalasa
és tesztelése

AV &YV eljaras

Az egész életciklusra jellemzd
* AV &V-taszoftver fejlesztés minden [épésénél alkalmazni kell.

Két fo feladat:

* Arendszerbeli hibak felfedezése.

* Annak felmérése, hogy a rendszer hasznos-e és hasznalhaté-e a felhasznalasi
kornyezetben.

AV &YV célja

A verifikacio és validacid a szoftver iranti bizalmi alapot teremt:
A szoftver el tudja latni a feladatat

NEM azt jelenti, hogy teljesen hibamentes.

Azt jelenti, hogy elég j6 ahhoz, hogy elldssa feladatat.

(A feladat tipusa hatdrozza meg, milyen mértékd bizalom kell.)

A bizalmi szint

A rendszer céljatdl, a felhasznaldk elvarasaitdl, valamint a piaci viszonyoktdl

fugg:

* aszoftver célja

* A bizalmi szint fugg attdl, hogy mennyire kritikus a szoftver a szervezet szamara.
* felhasznal¢ elvarasok

* Afelhaszndldknak bizonyos szoftverekkel szemben nagyon alacsony elvarasaik vannak.
* piaci kérnyezet

* A gyors piacra dobas fontosabb lehet, mint a hibak megtalalasa.

AV &V tervezése

A tesztelési és vizsgalati eljarasok sikere érdekében kdrultekinto tervezésre van
szukség.

A tervezést mar a fejlesztés korai fazisaban el kell kezdeni.

A terv hatarozza meg a statikus vizsgalat és a tesztelés helyes egyensulyat.

AV &V tervezése a tesztelési eljaras irdnyelveit fogalmazza meg, nem kell a
termék tesztelését itt leirni.

AV&V terv

A teszteld eljaras.
A tesztelési eljaras fébb fazisainak leirdsa.
Koévetelmények kévethetbsége.
A teszteket ugy kell megtervezni, hogy minden kdvetelményt kiilén lehessen tesztelni.
Tesztelt elemek.
A fejlesztési eljaras azon elemeit specifikaljuk, amelyeket tesztelni kell.
A tesztelés menetrendje.

A tesztelés menetrendje a sziikséges eréforrdsok foglalasdval. Természetesen szorosan
kapcsolddik a teljes projekt Gtemezéséhez.

A tesztek régzitésének eljarasa.

A teszteket nemcsak futtatni kell, hanem az eredményeket szisztematikusan régziteni is. A
tesztelési eljarasnak felilvizsgalhatdnak kell lenni.

Hardver és szoftver sziikségletek.
A sziikséges szoftver eszkdzok listaja a becsiilt hardver hasznalattal egyiitt.
Kényszerek.

A tesztelési eljarast befolyasold kényszerek, pl. munkaerd hiany.

AV&Y ket alapveto tipusa

Szoftvervizsgalatok — statikus V&V
* Problémak feltardsa a rendszer statikus reprezentacidjanak analizise segitségével.
(Kiegészithet6 eszkdz-alapi dokumentum- és forraskdd-analizissel.)

Szoftvertesztelés — dinamikus V&V
* Kisérletezés és a termék viselkedésének megfigyelése.
(A rendszert teszt-adatokkal futtatva miikodés kdzben figyeljik a viselkedését.)

Statikus és dinamikus V&V
vizsgalat

Kévetelmény Magas-szint({ Formalis . Program
I I Részletes terv #
specifikacid terv specifikdié kéd

A 4 A 4

Prototipus Program

Szoftver
tesztelés

Osszefoglalds

A verifikacid és validaciéd nem ugyanazt jelenti.

A verifikacid a specifikacio teljesitését mutatja, a validacid pedig azt, hogy a
program kielégiti a felhasznalo igényeit.

A tesztelési eljarast tesztelési tervek segitik, ezek elkészitése sziikséges.

A statikus verifikacids technikdk hibadetektalas céljabdl vizsgaljak és analizaljak

a programot.

A hibak felderitésének nagyon hasznos mddja a szoftvervizsgalat.

A vizsgalat soran hibakeresés céljabol a programkodot egy kis léetszamu csoport

szisztematikusan atvizsgalja.

Szoftvervizsgalatok

(statikus V&V)

Bevezetés

Emberek (gépek) vizsgaljdk a forrds valamilyen reprezentdcidjat anomalidk és
hibak utan kutatva.

A vizsgdlathoz nem kell a rendszert futtatni, igy implementacio elbtt is

megtehetd.

A rendszer barmely reprezentacioja vizsgalhato: kovetelmények, terv,
konfiguracids adatok, teszt adatok, stb.

Bevezetés

A reprezentdcio felllvizsgalatanak formalis mddszere

Célja kizardlag a hibdk jelenlétének jelzése, (nem pedig javitasa).

A hibdk lehetnek (pl.)
+ logikai hibak;
 anomadlidk a kddban, amik hibds allapotot jelezhetnek (pl. nem inicializalt valtozd);
* egyes szabvanyok nem teljesitése.

A szoftvervizsgalat tipusai

Dokumentum atvilagitas

* Kovetelmények
* Felhasznaldi
* Rendszer
* Tervek
* Rendszer, alrendszer, modul
* Teszt

Program (forraskdd) atvilagitas
Automatizalt forraskdd elemzés

Formalis verifikacio

Avizsgalat elOfeltételei

Preciz, teljes reprezentacio.

A csoport tagjainak ismerni kell a szervezet mikodési szabalyait.
Szintaktikailag helyes kod, vagy valamilyen mas rendszer-reprezentacio.
Egy hiba-ellendrz§ listat kell késziteni.

A menedzsmentnek el kell fogadni, hogy a szoftver vizsgalat néveli a
koltségeket.

A menedzsment ne hasznalja a szoftver vizsgalatot a dolgozdk értékelésére (pl.
ki hibazott).

Avizsgalat hatekonysaga

Egyetlen vizsgalat tobb hibat is feltarhat. A tesztelés soran egy hiba elfedhet
mas hibakat, igy ott tobbszori végrehajtas kell.

Az Ujrafelhasznadlds és a programozadi tapasztalat miatt a feltlvizsgaldk
valdszin(ileg taldlkoztak mar a gyakran el8forduld hibakkal.

Szoftver vizsgalatok és szoftver tesztelés

A vizsgalatok és a tesztelés egymast kiegészitd verifikaciés technikak.

A vizsgdlat ellendrzi, hogy a specifikdcionak megfelel-e, de azt nem, hogy a valds
felhasznadldi igényeket kielégiti-e.

A vizsgalatok nem tudjak ellendrizni a nem-funkcionalis jellemzdket, pl.
teljesitmény, haszndlhatdsag, stb.

Tervezés

A vizsgalat folyamata

A 4

(Attek@*
A\ 4

(El(ikészi]letebi
A 4

C

Vizsgélati
ilés
A 4

<Atdolgozés>7
4
‘ Kovetés)

A vizsgalat folyamata

A rendszer ismertetése a felllvizsgald csoport szamara.

A csoport tagjai megkapjdk a kddot és az egyéb kapcsolddd dokumentumokat.
A vizsgalat megtorténik, a felfedezett hibakat feljegyzik.

A felfedezett hib3k javitasa érdekében a sziikséges mddositasok elvégzése.

Szikség esetén ujabb vizsgalat.

Szerepek a vizsgalat soran

Szerz6 vagy tulajdonos

Vizsgalo

Felolvasé
irnok

EInék vagy moderator

F6 moderator

A programozo vagy tervez6, aki a program vagy egyéb dokumentum
l[étrehozdsaért felelds. Az & felel6ssége a vizsgalat soran feltart hibdk javitdsa
is.

Hibak, hidnyossagok, inkonzisztencidk keresése a programokban és
dokumentacidban. Esetleg a vizsgald bizottsag feladatkorén kivdil allé
kérdéseket is felvethet.

A vizsgalati tilésen bemutatja a kéddot vagy dokumentumot.
A vizsgilati lilés eredményeit rogziti.

Menedzseli és segiti a vizsgalat menetét. Az eredményeket a {6 moderdtornak
jelenti.

A vizsgalati folyamat javitdsaért, a hiba-ellendrz@ lista frissitéséért,
eszkdzokért, stb. felelds.

Avizsgalat tipusai

Code review — egy vagy tobb (tapasztaltabb) programozd atnézi a kddot

HOW TO MAKE A
GOOD CODE REVIEW

AT LEAST WE
DON'T MEED TO
OBFUSCATE IT
BEFORE
SHIPPING

AT LEAST SOMETHING
POSITIVE

Paros programozas — egyik programozo fejleszt, a masik ,,csak” figyel

Refactoring — mar tesztelt, mikodd kdd szerkezetének javitasa

A vizsgalat tipusai (folyt.)

Technical review
* teljesitmény optimalizalasra vagy nehezen megtaldlhatd hibak felfedésére
« kilsd szakértdi atvizsgélas | minésités valamely tulajdonsagra (pl. MEI, TUV)

Inspekcid
* szoftver teljes atvizsgalasa (nem csak valamely tulajdonsagra vagy funkcidra)
 kils§ szakértd
* hosszlidé (t6bb hénap is lehet)

Ellenorzo listak

A gyakori hibakat tartalmazo ellendrzg lista hasznalando a vizsgalat
levezetésére.

A hiba-ellendrzd listak programnyelv-specifikusak és az adott programnyelv
karakterisztikus hibait tartalmazzak.

Altaldban minél gyengébb a tipus-ellendrzés, anndl hosszabb az ellenérzé lista.

Példak: inicializalas, konstansok elnevezése, kilépés hurokbdl, tombhatar
tullépés, stb.

Adathibak

Vezérlési hibak

1/0 hibak

Ellenorzo lista 1

Minden véltozd inicializalva van, mielStt hasznalnank? SIMPLY EXPLAINED

Az 0sszes konstansnak van neve?

A témbok felsd indexe a témb méretével egyenld vagy ennél eggyel kisebb
kell legyen?

Karakter-témbdk haszndlata esetén a delimiter egyértelmiien definidlva van?

ARE YOU REALLY
5 L
Minden feltételes utasitdsra: helyes a feltétel?
Minden ciklus biztosan befejezddik?

Az utasitds-blokkokat helyesen zardjeleztiik?

Case utasitasnal minden lehet8séget kimeritettiink? , -
NullPointerException

Ha minden case utasitas utan break kell, akkor ezek jelen vannak?

Minden bemend valtozot hasznalunk?

Minden kimeneti valtozénak adunk értéket visszatérés elott?

Varatlan bementi adatok okozhatnak-e hibat?

Interfész hibak

Tarolas-menedzsment hibak

Kivétel-kezelési hibak

Ellenorzo lista 2

Minden fliggvény- és metddus-hivasnak megfelel6 szamu paramétere van?
A paraméter-tipusok megfelel6k?
A paraméterek sorrendje megfeleld?

Ha tobb komponens osztott memdriat hasznal, akkor ugyanolyan
strukturdji memdria-modellt haszndlnak?

Lancolt szerkezetek mddositdsa esetén minden mutaté megfeleléen
mddositva van?

Dinamikus memdriahasznalat esetén helyes-e az allokacié?
A nem hasznalt memdria explicit médon fel van-e szabaditva?

Minden lehetséges hibalehetdség figyelembe lett véve?

Avizsgalat sebessege

500 utasitds/dra az attekintés soran.

125 forras utasitas/dra az egyéni el8késziiletek alatt.

90-125 utasitas/dra vizsgalhatd az llésen.

A vizsgalat draga!

Pl.: 500 sor megvizsgalasa kb. 40 ember ora igény, ami kb. 500 eFt.

igy is olcsébb lehet, mint a komponens tesztelés.

Szoftvertesztelés

(dinamikus V&V)

Szoftvertesztelés

A hib3dk jelenlétét és NEM hidanyat jelezheti.

Az egyetlen V & V technika nem-funkcionalis kdvetelmények ellendrzésére,
hiszen a szoftvert végre kell hajtani ahhoz, hogy Idssuk, miként viselkedik.

Statikus ellendrzéssel egylitt célszerl hasznalni, hogy teljes V&V lefedettséget
kapjunk.

Tesztelési tanacsok

Csak a kimerito teszteléssel derithetd ki, hogy a program hibamentes. De a
Kimerito tesztelés lehetetlen.

A tesztelési vezérelvek definidljak a tesztek kivalasztasanak maodjat. Pl.:
* Amenikon keresztil elérhetd valamennyi funkciét le kell tesztelni;
* Az azonos menin keresztil elérhet6 funkcidok kombinacidit tesztelni kell;

* Ahol felhasznaldi bevitel van, minden funkciét ellendrizni kell helyes és helytelen
adatokkal.

Tesztelési tanacsok (folyt.)

Otletek a tesztel6knek: hogyan érdemes olyan teszteket valasztani, amelyek
kimutatjak a rendszer hibait.

* Olyan bemenetek vdlasztdsa, amelyek a rendszert hibatizenetek (az dsszes!) generdldsara
kényszeritik;

Olyan bemenetek tervezése, ami puffer tulcsordulashoz vezethet;

Ugyanazon bemenet vagy bemeneti sorozat tobbszori ismétlése;
Ervénytelen kimenetek kikényszeritése;

Tul nagy vagy tul kicsi szamitasi eredmények kikényszeritése.

Tesztterv
készitése

o P
* A 4

A szoftvertesztelés folyamata

Teszt

Tesztesetek Teszt adatok ,
eredmény

Tesztesetek Teszt adatok Tesztek Eredmények
tervezése tervezése végrehajtasa kiértékelése

A A

A 4

Tesztterv Tesztnapld

o
*

A szoftvertesztelés szintjei

Komponensteszt (fejlesztd)
* Ateljes rendszer egy-egy komponensét teszteli 5nmagaban

Integracids teszt (fejleszto)
* Komponensek koz6tti egyuttmikddést teszteli

Rendszerteszt (fliggetlen csoport)
* Ateljes rendszert, azaz minden komponenst egyiitt tesztel

Atvételi teszt (fliggetlen csoport)
* Felhasznaldi teszt, a mar kész rendszeren

A szoftvertesztelés technikai

Fekete dobozos (black-box)
* specifikacid alapu tesztelés
* atesztel6 csak a specifikacidt ismeri, a forraskédot nem

Fehér dobozos (white boksz)

* kdd (struktira) alapt tesztelés
* atesztel$ a specifikacidt és a forraskddot is ismeri

