
A szoftvertesztelés típusai

Verifikációs tesztelés (hibatesztelés)

• Tesztek a rendszerhibák feltárására.

• A jó teszt feltárja a rendszerben lévő hibák jelenlétét: program és specifikáció közötti
ellentmondás.

Validációs tesztelés

• Célja annak bizonyítása, hogy a szoftver megfelel a megrendelő igényeinek.

• A jó teszt megmutatja, hogy a rendszer teljesítménye és megbízhatósága valós
körülmények között is megfelelő-e.

72

Hibatesztelés vs. hibakeresés

Hibatesztelés

• programhibák jelenlétének feltárása

Hibakeresés

• hibák lokalizálása és javítása

73

A hibakeresés folyamata

74

Teszt
eredmények

Specifikáció

Hiba
lokalizálása

Hibajavítás
tervezése

Hiba javítása
Újra-

tesztelés

Teszt
esetek

A hibakeresés során a program viselkedéséről hipotéziseket állítunk fel

• túlcímzések, nullával osztás, végtelen ciklusok, stb.

Komponens tesztelés

75

Komponens tesztelés

A komponens tesztelés az egyes komponensek izolált tesztelésének folyamata.

Jellemzően white-box tesztelés

Komponensek lehetnek

• egyedi függvények vagy objektumok metódusai

• objektum osztályok sok attribútummal és metódussal

• kompozit komponensek, amelyek szolgáltatásait interfészeken keresztül lehet elérni

76

Komponens tesztelés típusai

unit teszt

• metódusokat teszteli

• minden metódusra ismerjük a bemeneti paraméterekre adandó választ

• a tesztelés megvizsgálja, hogy a kapott érték megegyezik-e az elvárttal

modul test

• Nem a modul egy-egy funkcióját teszteli

• Hanem egy tulajdonságát

• sebesség

• szűk keresztmetszet

• memóriaszivárgás

• stb.

77

Interfész tesztelés

78

A cél az interfészek hibáinak, vagy az interfészekről alkotott hibás
feltételezésekből eredő hibák felderítése.

Nagyon fontos objektum-orientált fejlesztés esetén, amikor is az objektumokat
interfészeikkel definiáljuk.

Interfész tesztelés

79

Interfészek típusai

Paraméter interfészek
• Adat átadása egyik eljárásból a másikba.

Osztott memória interfészek
• Egy közös memóriarészt használ több eljárás vagy függvény.

Procedurális interfészek
• Egy alrendszer eljárásokat tartalmaz, amelyeket más alrendszerek hívhatnak.

Üzenettovábbításos interfészek
• Komponensek más komponensektől üzeneteken keresztül szolgáltatást kérnek.

80

Interfész hibák

Hibás interfész használat

• A hívó komponens egy másik komponenst akar használni, de rosszul használja annak
interfészét (pl. rossz paraméter-sorrend).

Interfész félreértelmezés

• A hívó komponens a hívott komponens viselkedéséről téves feltételezésekkel él.

Időzítési hibák

• A hívó és hívott komponensek más sebességgel működnek és így előfordulhat elavult
adatok használata.

81

Integrációs tesztelés

82

Miért kell?

83

Integrációs tesztelés

A komponensek interakciójából eredő problémákkal foglalkozik.

A modulok összeillesztése során keletkező hibákat keresi.
• modulok eltérő forrásból

A hibalokalizálás megkönnyítése érdekében a rendszereket inkrementálisan
célszerű integrálni

• no big-bang

84

Rendszertesztelés

85

Rendszertesztelés

A már komplett rendszert vizsgálja.

Elvárás, hogy a rendszer megfeleljen a specifikációnak és a rendszertervnek.

Jellemzően black-box teszt.

Nem a fejlesztő végzi.

86

Szcenárió-alapú rendszer tesztelés

Egy diák Amerikai történelmet tanul és éppen dolgozatot ír a
polgárháborúról. Ehhez forrásokat keres különféle könyvtárakban. A
LIBSYS rendszerbe bejelentkezve a kereső szolgáltatást használja eredeti
dokumentumok keresésére. Talál is néhány forrást amerikai egyetemek
könyvtáraiban és le is tölt onnan néhány másolatot. Az egyik
dokumentumhoz azonban igazolásra van szüksége az egyetemétől, hogy
valóban hallgató és a letöltés nem szolgál kereskedelmi célokat. Az igazolás
kiállítását a LIBSYS rendszeren keresztül kéri. Ha az igazolást megkapja,
akkor a dokumentumot letöltik a könyvtár szerverére és kinyomtatják. A
diák egy e-mail üzenetet fog kapni, amelyben értesítik, hogy átveheti a
dokumentumot.

87

Rendszertesztek

A bejelentkezési mechanizmus tesztelése helyes és helytelen azonosítókkal:
annak ellenőrzése, hogy az érvényes azonosítókat elfogadja, az
érvényteleneket visszautasítja.

A keresés tesztelése különféle kereső kifejezésekkel ismert forrásokra:
ellenőrizhető, hogy a kereső valóban megtalálja-e a dokumentumokat.

A kijelzés tesztelése: a dokumentumokról szóló információ helyesen van-e
kijelezve?

A letöltéshez engedélyt kérő mechanizmus tesztelése.

Az e-mail-es értesítő rendszer tesztelése: elküldi-e a levelet a dokumentum
megérkezésekor.

88

Használati eset alapú rendszerteszt

Használati esetek (use cases) alapján tesztek készíthetők. Segítenek a
tesztelendő operációk kiválasztásánál és a szükséges teszt esetek
megtervezésében.

A kapcsolódó szekvencia-diagramból a teszt számára a bemenetek és kimenetek
meghatározhatók.

89

Egy meteorológiai állomás használati eset diagramja

Star tup

Shutdown

Repor t

Calibrate

Test

A riport küldés szekvencia diagramja

:CommsController

request (repor t)

acknowledge ()
repor t ()

summarise ()

reply (repor t)

acknowledge ()

send (repor t)

:WeatherStation :WeatherData

91

Átvételi tesztelés

92

Átvételi tesztelés

Az egész rendszer átadáskor végzett tesztelésének folyamata

A végfelhasználóval közösen végzik

Szintjei

• alfa

• béta (zárt vagy nyílt)

• felhasználói átvétel

• üzemeltetői átvétel

93

Átvételi teszt – alfa és béta

Alfateszt

• cégen belül történik, de már nem a fejlesztő csapat által

• funkcionális tesztek mellett stabilitás, sebesség, megbízhatóság, használhatóság
vizsgálata

Bétateszt

• publikus, de még nem éles használatra kiadott verzió

• több, egymást követő bétateszt is lehetséges, felhasználók köre folyamatosan bővül

• lehet hogy először csak más fejlesztők vagy csoportok kapják meg a béta verziókat

94

Átvételi teszt – felhasználói

A teljes célközönség használatba veszi.

A szoftver már teljes funkcionalitással rendelkezik.

A rendszer éles környezetben is használható.

Általában ekkor teszteli a legtöbb felhasználó, a legszélesebb hardver- és
szoftverkörnyezetben.

A leggondosabban kiadott verziók esetében is előfordul, hogy új hibákat tárnak
fel a felhasználók.

95

Átvételi teszt – üzemeltetői

A szoftvereknek csak egy olyan csoportját érinti, ahol a használó és az
üzemeltető külön személy

A rendszergazdák ellenőrzik

• a különböző biztonsági funkciókat

• mentés és helyreállítás lehetőségét

• üzembiztonságot

96

A teljesítmény tesztelése

Az átvételi teszt egy része a rendszer eredő tulajdonságainak tesztelése, pl.
teljesítmény, megbízhatóság.

A teljesítmény tesztelése általában egy teszt-sorozattal történik, ahol a terhelést
fokozatosan növeljük, amíg a rendszer teljesítménye már elfogadhatatlanná
válik.

97

Stressz tesztelés

A rendszert a tervezett értéknél jobban terheljük. A rendszer stresszelése
gyakran fed fel hibákat.

A stresszelés a hibás működés közbeni viselkedését is teszteli. A rendszernek
nem szabad katasztrofálisan összeomlania. Teszteli az elfogadhatatlan
szolgáltatás-kiesést vagy adatvesztést.

A stressz teszt különösen fontos elosztott rendszereknél, ahol a rendszer
súlyosan degradálódhat, ha a hálózat túlterhelődik.

98

Teszttervezés

99

Teszttervezés

A tesztelés során használt teszt esetek (bemenetek és kimentek) tervezésével
foglalkozik.

A teszt esetek tervezésének célja hatékony tesztek készítése validációs és
hibatesztelés céljára.

Tervezési módszerek (pl.)

• követelmény-alapú tesztelés

• partíciós tesztelés

• strukturális tesztelés

100

Tesztterv

A tesztterv leírja, hogy mit és hogyan kell tesztelni. Fontos szempont, hogy egy-
egy tesztet mikor tekintünk sikeresnek. Jellemzően a rendszertervben, a
minőségbiztosítás fejezetben található.

A következő fogalmak alapvetően szükségesek a tesztterv elkészítéséhez

• a teszt tárgya – az adott teszt mely egységet érinti

• tesztbázis – a teszt tárgyára vonatkozó dokumentumok valamint követelmények

• tesztadat – a teszt során használt bemeneti, illetve kimeneti adatok

• kilépési feltétel – megadja, hogy egy teszt mikor tekinthető sikeresnek és/vagy
lezárhatónak

101

Teszteset

Cél

• egy meghatározott vezérlési út végrehajtatása

• egy meghatározott követelmény teljesülésének ellenőrzése

Összetevői

• végrehajtási előfeltételek (preconditions)

• input értékek halmaza

• tesztelés lépései

• elvárt eredmény

• végrehajtási végfeltételek (postconditions)

102

Teszteset (példa)

103

Tesztnapló

A tesztelés során naplót kell vezetni

• milyen tesztlépéseket hajtottunk végre

• milyen eredményeket kaptunk

• a tesztelési folyamat megismételhetőségéhez kell

• hibás teszt esetén a hibajelentéshez kell

A tesztnapló alapján eldönthető kell legyen, hogy a teszt sikeres volt-e

104

Tesztnapló (template)

105

Tesztnapló (példa)

106

Tesztjelentés

A tesztelési ciklus végén, a tesztnapló alapján készül a tesztjelentés. Ez
tartalmazza az adott ciklus eredményeit, a hibák javításához szükséges alapvető
információkat: hol, mikor, milyen hiba volt, milyen bemeneti és kimeneti
paraméterekkel.

Amennyiben a tesztelő és a fejlesztő személye különböző, fontos szempont,
hogy ne ellenségként tekintsenek egymásra, hanem a közös célt, a magas
minőségű, hatékony fejlesztést helyezzék előtérbe.

107

Tesztjelentés (példa)

108

Összefoglalás

A tesztelés felfedheti hibák jelenlétét a rendszerben, de nem tudja bizonyítani,
hogy nem maradt több hiba.

A komponensek fejlesztői felelősek a komponens tesztelésért, a
rendszertesztelés egy független csoport feladata.

Az integrációs tesztelés a rendszer növekményeinek tesztje, az átadási teszt
pedig a megrendelőnek átadni kívánt rendszer tesztelésével foglalkozik.

A hibatesztelés tervezéséhez mind a tapasztalat, mind ökölszabályok
használhatók.

Az interfész tesztelés feladata a kompozit komponensek interfészeiben levő
hibák feltárása.

109

