
1

4.
A szoftvergyártás folyamata

2

Kérdések

 Mi a szoftvergyártás modellje?

 Mi a három alapvető modell és mikor
használjuk ezeket?

 Mik a követelménytervezés, a
szoftverfejlesztés, a tesztelés és az szoftver-
evolúció főbb elemei?

 Mi a „Rational Unified Process” modell?

 Mi a CASE technológia a szerepe a
szoftvergyárgyás folyamatában?

Kérdések

3

Tartalom

1. A szoftvergyártás modelljei

2. Iteratív szoftverfejlesztés

3. A szoftvergyártás lépései

4. A Rational Unified Process

5. A számítógéppel segített szoftverfejlesztés

Tartalom

4

1. Szoftvergyártás

 Tevékenységek olyan strukturált sorozata, amelyek
a szoftverek kifejlesztéséhez szükségesek

• Specifikáció;

• Tervezés;

• Ellenőrzés (validáció);

• Továbbfejlesztés (evolúció).

 A szoftvergyártás absztrakt modellje a gyártási
tevékenységet írja le egy adott nézőpontból.

1. A szoftvergyártás modelljei

5

Alapvető szoftvergyártási modellek

 A vízesés (waterfall) modell
• Élesen elkülönülő specifikációs és fejlesztési

fázisok.

 Evolúciós fejlesztési modellek
• A specifikáció, fejlesztés és validáció átlapolódik.

 Komponens alapú fejlesztés
• A rendszert kész komponensekből állítjuk össze.

 A fenti modelleknek számos variációja létezik. Pl.
formális fejlesztési modell: ez vízesés modellen
alapul, ahol a specifikáció formális, ami sok
lépésben finomítva elvezet az implementálható
tervig.

1. A szoftvergyártás modelljei

6

1.1 A vízesés modell

Követelmény
definíció

Rendszer- és
szoftvertervezés

Implementáció
és részegységek

tesztelése

Integráció
és a rendszer

tesztelése

Üzemeltetés és
karbantartás

1. A szoftvergyártás modelljei / 1.1 A vízesés modell

7

A vízesés modell fázisai

 Követelményanalízis és – definíció

 Rendszer- és szoftvertervezés

 Implementáció és a részegységek tesztelése

 Részegységek integrálása és a rendszer tesztelés

 Működtetés és karbantartás

 A vízesés modell legfőbb hátrányai:

• A gyártás megindulás a után nehéz változásokat
beépíteni.

• Egy munkafázisnak be kell fejeződni, mielőtt a
következő elkezdődhet.

1. A szoftvergyártás modelljei / 1.1 A vízesés modell

8

A vízesés modell problémái

 Nehéz a változó megrendelői igényekhez
igazodni, mert a projekt nehezen változtatható
részegységekből áll.

 Ez a modell akkor hasznos, ha a követelmények
jól ismertek és csak nagyon kis változások
lehetségesek a fejlesztés során.

 Sajnos csak kevés üzleti rendszernek vannak
stabil követelményei.

 A vízesés modellt főleg nagy rendszerek
fejlesztése során használják, ahol a fejlesztés
több helyszínen történik.

1. A szoftvergyártás modelljei / 1.1 A vízesés modell

9

1.2 Evolúciós fejlesztés

 Kísérletező fejlesztés

• Cél: a megrendelővel együtt egy kezdeti durva
specifikációból a végleges rendszert kialakítani. A
biztos követelményekből kiindulva a megrendelő
igényei szerint újabb funkciókkal bővíthető a
rendszer.

 Eldobható prototípus

• Cél: a homályos követelmények tisztázása. A
legkevésbé kiforrott követelményekből indul, hogy
tisztázza a valós igényeket.

1. A szoftvergyártás modelljei / 1.2 Evolúciós fejlesztés

10

Evolúciós fejlesztés

Durva
specifikáció

Kezdeti
verzió

Átmeneti
verziók

Végleges
verziók

Specifikáció

Fejlesztés

Validáció

Párhuzamos
tevékenységek

1. A szoftvergyártás modelljei / 1.2 Evolúciós fejlesztés

11

Evolúciós fejlesztés

 Problémák
• A fejlesztés nem átlátható;

• A rendszerek gyakran rosszul strukturáltak;

• Speciális felkészültségre lehet szükség (pl. rapid
prototyping nyelvek).

 Alkalmazhatóság
• Kis- és középméretű interaktív rendszerek;

• Nagy rendszerek részegységei (pl. felhasználói
felület);

• Rövid élettartamú rendszerek.

1. A szoftvergyártás modelljei / 1.2 Evolúciós fejlesztés

12

1.3 Komponens-alapú szoftverfejlesztés

 Szisztematikus újrafelhasználáson alapul. A
rendszereket már létező, vagy készen
vásárolható (COTS) rendszerekből integráljuk.

 A szoftvergyártás lépései:
• Komponens analízis;

• Követelmények módosítása;

• Rendszertervezés újrafelhasználással;

• Fejlesztés és integráció.

 Egyre szélesebb körben terjed, ahogy a
komponens szabványok fejlődnek.

1. A szoftvergyártás modelljei / 1.3 Komponens-alapú szoftverfejlesztés

13

Újrafelhasználás-alapú fejlesztés

Követelmény-
Specifikáció

Komponens
analízis

Követelmények
módosítása

Rendszertervezés
újrafelhasználással

Fejlesztés és
integráció

A rendszer
validációja

1. A szoftvergyártás modelljei / 1.3 Komponens-alapú szoftverfejlesztés

14

2. Iteratív szoftverfejlesztés

 A rendszerkövetelmények MINDEN projekt
során változnak, így az iteratív megközelítés
(korábban elvégzett munkafázisok
átdolgozása) minden nagyobb rendszer
fejlesztésének része.

 Az iteratív megközelítés valamennyi alapvető
módszerhez alkalmazható.

 Két kapcsolódó megközelítés:
• Inkrementális teljesítés

• Spirális fejlesztés

2. Iteratív szoftverfejlesztés

15

2.1 Inkrementális teljesítés

 A rendszert nem egy részletben szállítjuk, hanem
a fejlesztés és átadás részekre van bontva.
Minden újabb átadott részegység a rendszer
újabb funkcionalitását valósítja meg.

 A felhasználó igényeknek megfelelő prioritási
sorrendben szállítunk, a legfontosabb funkciókkal
kezdve.

 Amint egy részegység fejlesztése elkezdődött,
annak követelményeit „befagyasztjuk”. Későbbi
részegységek követelményei még változhatnak.

2. Iteratív szoftverfejlesztés / 2.1 Inkrementális teljesítés

16

Inkrementális teljesítés

Durva követelmény-
specifikáció

Követelmények
részegységekhez

rendelése

Rendszer-
architektúra
tervezése

Részegység
fejlesztése

Részegység
validációja

Részegység
integrálása

Rendszer
validációja

Kész
rendszer

Félkész
rendszer

2. Iteratív szoftverfejlesztés / 2.1 Inkrementális teljesítés

17

Az inkrementális teljesítés előnyei

 Minden átadás során működő részegységeket
helyezünk üzembe. A rendszer korábban
kezdheti meg (rész)működését.

 Korábbi komponensek prototípusként
működnek, így a későbbi részegységek
követelménytervezésében ezek is segítenek.

 Kisebb a projekt teljes csődjének esélye.

 A legfontosabb szolgáltatásokat tesztelik a
legtovább.

2. Iteratív szoftverfejlesztés / 2.1 Inkrementális teljesítés

18

Extrém programozás

 Itt a fejlesztés és átadás nagyon kis
funkcionális részegységenként történik.

 Állandó kódjavítás, a felhasználó aktív
részvétele a fejlesztésben, valamint „páros
programozás” jellemzik.

2. Iteratív szoftverfejlesztés / 2.1 Inkrementális teljesítés

19

2.2 Spirális fejlesztés

 A gyártási folyamat sokkal inkább egy spirállal
jellemezhető, mint tevékenységek
(visszalépéses) sorozataként.

 A spirál minden hurka a gyártási folyamat egy
fázisát jelképezi.

 Nincsenek fix hurkok (pl. specifikáció, vagy
tervezés). A hurkokat az igényeknek
megfelelően alakítjuk ki.

 A kockázatkezelés explicit módon megjelenik a
gyártási folyamatban.

2. Iteratív szoftverfejlesztés / 2.2 Spirális fejlesztés

20

A szoftvergyártás spirális modellje

Risk

anal ysis

Risk

anal ysis

Risk

anal ysis

Risk

anal ysis Proto-

type 1

Prototype 2

Prototype 3
Oper a-

tional

pr oto ype

Concept of

Oper a tion

Simula tions , models , benchmar ks

S/W

requir ements

Requir ement

valida tion

Design

V&V

Product

design Detailed

design

Code

Unit test

Integ ra tion

test
Acceptance

testService Develop , verify

ne xt-le vel pr oduct

Evalua te alterna tives,

identify , resolv e risks

Deter mine objecti ves,

alterna tives and

constr aints

Plan ne xt phase

Integ ra tion

and test plan

Development

plan

Requir ements plan

Life-cycle plan

REVIEW

2. Iteratív szoftverfejlesztés / 2.2 Spirális fejlesztés

21

A spirális modell szektorai

 Célkitűzések megállapítása

• Az adott fázis céljainak megállapítása.

 Kockázatbecslés és -csökkentés

• A kockázati tényezők felmérése, valamint a legfőbb
kockázati faktorok várható hatásának csökkentése.

 Fejlesztés és validáció

• Az általános módszerek közül bármely kiválasztása.

 Tervezés

• A projekt áttekintése és a spirál következő fázisának
megtervezése.

2. Iteratív szoftverfejlesztés / 2.2 Spirális fejlesztés

22

3. A szoftvergyártás lépései

 Szoftver specifikáció;

 Szoftver tervezés és implementáció;

 Szoftver ellenőrzés (validáció);

 Szoftver továbbfejlesztés (evolúció).

3. A szoftvergyártás lépései

23

3.1 Szoftver specifikáció

 Választ keresünk a következő kérdésekre:
milyen szolgáltatásokat várunk el a
rendszertől, milyen kötöttségeket és
kényszereket kell figyelembe venni a fejlesztés
és üzemeltetés során.

 Követelménytervezési lépései:
• Megvalósíthatósági tanulmány;

• Követelmények gyűjtése és analízise;

• Követelmény specifikáció;

• Követelmény validáció.

3. A szoftvergyártás lépései / 3.1 Szoftver specifikáció

24

A követelménytervezési eljárás

Megvalósíthatósági
tanulmány
készítése

Követelmények
gyűjtése és
analízise

Követelmény-
specifikáció

Követelmény-
validáció

Megvalósíthatósági
tanulmány

Rendszer-
modell

Felhasználói-
és rendszer-

követelmények

Követelmény-
dokumentum

3. A szoftvergyártás lépései / 3.1 Szoftver specifikáció

25

3.2 Szoftvertervezés és implementáció

 Az az eljárás, amelynek során a specifikáció egy
futtatható rendszerré alakul át.

 Szoftver tervezés

• Olyan szoftver struktúra tervezése, amely megvalósítja
a specifikációt;

 Implementáció

• A tervezett struktúrának végrehajtható kóddá alakítása;

 A tervezés és implementálás lépései egymással
szorosan összefüggnek és átlapolódhatnak.

3. A szoftvergyártás lépései / 3.2 Szoftvertervezés és implementáció

26

A tervezés lépései

 Architektúra tervezése

 Absztrakt specifikáció

 Interfészek tervezése

 Komponensek tervezése

 Adatstruktúrák tervezése

 Algoritmusok tervezése

3. A szoftvergyártás lépései / 3.2 Szoftvertervezés és implementáció

27

A szoftvertervezés folyamata

Rendszer-
architektúra

Követelmény-
tervezés

Szoftver-
specifikáció

Interfész-
specifikáció

Komponens-
specifikáció

Adat-
struktúra

specifikáció

Algoritmus-
specifikáció

Architektúra
tervezése

Absztrakt
specifikáció

Interfész
tervezés

Komponens
tervezés

Adatstruktúra
tervezés

Algoritmus
tervezés

Tervezési aktivitások

Tervezési eredmények

3. A szoftvergyártás lépései / 3.2 Szoftvertervezés és implementáció

28

Strukturált módszerek

 Szisztematikus szoftvertervezési módszerek

• Automatikus kódgenerálás

 A terv dokumentálása rendszerint grafikus
modellek segítségével történik.

 Lehetséges modellek:

• Objektum modell;

• Szekvenciális modell;

• Állapot-átmeneti modell;

• Strukturális modell;

• Adatfolyam modell.

3. A szoftvergyártás lépései / 3.2 Szoftvertervezés és implementáció

29

Programozás és hibakeresés

 A terv programmá alakítása, valamint a hibák
eltávolítása.

 A programozás egyéni tevékenység – nincs rá
általános módszer.

 A programozók tesztelést végeznek, hogy a
programhibák kiderüljenek, majd ezeket
kijavítják (hibakeresés, debuggolás).

3. A szoftvergyártás lépései / 3.2 Szoftvertervezés és implementáció

30

A hibakeresés folyamata

Hiba
lokalizálása

Hibajavítás
tervezése

Hibajavítás
Program ismételt

tesztelése

3. A szoftvergyártás lépései / 3.2 Szoftvertervezés és implementáció

31

3.3 Szoftver validáció

 A verifikáció és validáció (V & V) célja annak
bizonyítása, hogy a rendszer teljesíti a
specifikációban foglaltakat és a felhasználó
igényeinek megfelelően működik.

 Elemei: Ellenőrzés, felülvizsgálat és
rendszertesztelés.

 Rendszertesztelés: a rendszer futtatása olyan
tesztadatokkal, amely a specifikáció szerint a
valós működés során előfordulhat.

3. A szoftvergyártás lépései / 3.3 Szoftver validáció

32

A tesztelési eljárás

Komponens-
tesztelés

Rendszer-
tesztelés

Végteszt

3. A szoftvergyártás lépései / 3.3 Szoftver validáció

33

A tesztelés lépései

 Komponens- és részegység-tesztelés
• A különálló komponenseket egymástól függetlenül

teszteljük;

• A komponensek lehetnek: függvények, objektumok,
vagy ezek összetartozó csoportjai.

 Rendszertesztelés
• A rendszer egészének tesztelése. Különösen fontos az

eredő tulajdonságok ellenőrzése.

 Végteszt (átadási teszt)
• A megrendelő által szolgáltatott valós adatokkal annak

ellenőrzése, hogy a megrendelő igényeit valóban
kielégíti.

3. A szoftvergyártás lépései / 3.3 Szoftver validáció

34

A tesztelés fázisai

Követelmény-
specifikáció

Rendszer-
specifikáció

Rendszer-
tervezés

Részletes
tervezés

Részegységek
tervezése és

tesztelése

Működtetés Végteszt
Rendszer-
integráció

teszt

Alrendszer-
integráció

teszt

Végteszt-
terv

Rendszer-
integráció
tesztelési

terve

Alrendszer-
integráció
tesztelési

terve

3. A szoftvergyártás lépései / 3.3 Szoftver validáció

35

3.4 A szoftver evolúciója

 A szoftver eredendően rugalmas és
változtatható.

 Ahogy a változó üzleti-gazdasági körülmények
miatt a követelmények változnak, a kiszolgáló
szoftvernek is változnia és fejlődnie kell.

 Bár a fejlesztés és karbantartás között
régebben éles határvonal húzódott, ez egyre
kevésbé releváns, hiszen egyre kevesebb a
teljesen új rendszer (evolúció).

3. A szoftvergyártás lépései / 3.4 A szoftver evolúciója

36

Rendszerek evolúciója

Rendszer-
követelmények
meghatározása

A jelenlegi
rendszer
felmérése

Fejlesztési
javaslat

Rendszer
módosítása

Jelenlegi
rendszerek

Új
rendszer

3. A szoftvergyártás lépései / 3.4 A szoftver evolúciója

37

4. A Rational Unified Process

 Korszerű tervezési módszer, amely az UML,
és a hozzá kapcsolódó eljárásokból jött létre.

 Definiálja: ki, mit, hogyan

 Általában három nézetet használunk:

• Dinamikus nézet: a fejlesztési ciklus fázisait az idő
és a tartalom függvényében mutatja;

• Statikus nézet: A gyártási folyamat tevékenységeit
mutatja;

• Gyakorlati nézet: Jól bevált gyakorlati útmutató.

4. A Rational Unified Process

38

Ki, mit, hogyan

 Ki

• gyakorlatok, kompetenciák, felelősségek

 Mit

• dokumentumok, modellek, kód

 Hogyan

• munkaegységek, feladatok, folyamatok

4. A Rational Unified Process

39

4.1 Dinamikus nézet

4. A Rational Unified Process / 4.1 Dinamikus nézet

40

A RUP fázismodellje

Fázis-iteráció

Alapozás Kidolgozás Konstrukció Átmenet

4. A Rational Unified Process / 4.1 Dinamikus nézet

41

A RUP fázisai

 Alapozás
• A rendszer számára egy üzleti modell

megalkotása.

 Kidolgozás
• A problématér megértése és a rendszer-

architektúra kidolgozása.

 Konstrukció
• Rendszertervezés, programozás és tesztelés.

 Átmenet
• A rendszer telepítése a működési környezetbe.

4. A Rational Unified Process / 4.1 Dinamikus nézet

42

4.2 Statikus nézet

 A fejlesztési folyamat alatti tevékenységekre
fókuszál: munkafolyamatok

 6 alap munkafolyamat
• üzleti modellezés, követelmények, analízis és

tervezés, implementáció, tesztelés, telepítés

 3 támogató munkafolyamat
• konfiguráció és változás menedzsment, projekt

menedzsment, környezet

4. A Rational Unified Process / 4.2 Statikus nézet

43

Munkafolyamatok

 A tevékenységek, termékek, szerepek
(munkások) értelmes sorrendjét definiálja

 Bármely munkafolyamat bármelyik fázisban
aktív lehet

 A munkafolyamat leírás UML modellek köré
van szervezve
• use case model, sequence model, object model,

stb.

4. A Rational Unified Process / 4.2 Statikus nézet

44

Munkafolyamok

Munkafolyam Leírás

Üzleti modellezés Az üzletmenet esettanulmányokkal (use case) való modellezése.

Követelmények A rendszerrel kapcsolatba lépő aktorok azonosítása.
Esettanulmányok kidolgozása a követelmények modellezésére.

Analízis és tervezés Tervezési modell kidolgozása és dokumentálása architektúrális-,
komponens-, objektum-, valamint szekvenciális modellek
segítségével

Implementáció Rendszerkomponensek implementálása és alrendszerekké alakítása.
A tervezési modellekből automatikus kódgenerálás segíti ennek a
folyamatnak a gyorsítását.

Tesztelés A tesztelés iteratív eljárás amely az implementációval együtt hajtódik
végre. A rendszertesztelés az implementáció befejeztével kezdődik.

Telepítés Egy release készül, amelyet a felhasználóknak terjesztve ott
installálnak.

Konfiguráció- és
változás-menedzsment

Ez a kiegészítő munkafolyam menedzseli a rendszeren végrehajtott
változtatásokat.

Projekt-menedzsment Ez a kiegészítő munkafolyam menedzseli a rendszerfejlesztést.

Környezet Ez a munkafolyam a fejlesztő csapat megfelelő szoftvereszközökkel
való ellátásával foglalkozik.

4. A Rational Unified Process / 4.2 Statikus nézet

45

4.3 Gyakorlati útmutatók

 Ajánlott szoftvermérnöki technikák

 Hibák minimálisra csökkentése

 Hatékonyság maximálisra növelése

4. A Rational Unified Process / 4.3 Gyakorlati útmutatók

46

6 gyakorlati útmutató

 Iteratív szoftverfejlesztés

 Követelmény-menedzsment

 Komponens-alapú architektúrák használata

 Szoftver vizuális modellezése

 Szoftver minőség verifikálása

 Szoftver változások kontrollja

4. A Rational Unified Process / 4.3 Gyakorlati útmutatók

47

5. Számítógéppel segített szoftverfejlesztés

 CASE (Computer-aided software engineering) olyan
szoftver, amely a szoftverfejlesztés és evolúció
folyamatát segíti.

 Tevékenységek automatizálása

• Grafikus szerkesztők rendszermodellek fejlesztésére;

• Adatkönyvtár tervezési entitások menedzselésére;

• Grafikus felhasználó felület szerkesztő;

• Debuggerek hibakereséshez;

• Automatikus transzlátorok új programverziók
generálásához.

5. Számítógéppel segített szoftverfejlesztés

48

CASE technológia

 A CASE technológia bevezetése jelentős
fejlődési lépés volt a szoftvergyártásban, de
elmarad az egykor prognosztizált
nagyságrendi fejlődéstől...

• A szoftverfejlesztés kreatív gondolkodást igényel –
nem lehet automatizálni;

• A szoftverfejlesztés nagy projektek esetén
csapatmunka, így sok idő fordítódik a csoportok
közötti interakcióra. A CASE technológia nem
támogatja ezt.

5. Számítógéppel segített szoftverfejlesztés

49

CASE rendszerek osztályozása

 Az osztályozás segít megérteni a különféle CASE
eszközök felhasználási lehetőségeit a szoftvergyártás
során.

 Funkcionális nézet
• Az eszközöket funkciójuk szerint osztályozzuk.

 Aktivitás nézet
• Az eszközöket a folyamatban általuk támogatott

tevékenységek szerint osztályozzuk.

 Integrációs nézet
• Az osztályozás alapja, hogy az eszközök hogyan

vannak nagyobb egységekbe szervezve.

5. Számítógéppel segített szoftverfejlesztés

50

Eszközök funkcionális osztályozása

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers, interpreters

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

5. Számítógéppel segített szoftverfejlesztés

51

Eszközök aktivitás-alapú osztályozása

Specification Design Implementation Verification

and
Validation

Re-eng ineering tools

Testing tools

Debugg ing tools

Prog ram analysis tools

Language-processing
tools

Method suppor t tools

Prototyping tools

Configuration

management tools

Change management tools

Documentation tools

Editing tools

Planning tools

5. Számítógéppel segített szoftverfejlesztés

52

CASE eszközök integrációja

 Eszköz (tool)
• Elemi műveletek támogatása szolgál (pl.

konzisztencia-ellenőrzés, szövegszerkesztés, stb.)

 Munkapad (workbench)
• Egy gyártási fázist támogat (pl. specifikáció,

tervezés). Általában néhány integrált eszközt
tartalmaz.

 Környezet (environment)
• Az egész szoftvergyártási folyamat minden

lényeges elemét tartalmazza. Általában számos
integrált munkapadot tartalmaz.

5. Számítógéppel segített szoftverfejlesztés

53

Eszközök, munkapadok, környezetek

Single-method

workbenches

Gener al-purpose

workbenches

Multi-method

workbenches

Langua ge-specific

workbenches

Programming Testing
Analysis and

design

Integ rated
en vironments

Process-centr ed
en vironments

File
compar ators

CompilersEditors

EnvironmentsWor kbenchesTools

CASE

technolo gy

5. Számítógéppel segített szoftverfejlesztés

54

Összefoglalás

 A szoftvergyártás során szoftver rendszerek előállítása
/ kifejlesztése történik.

 A szoftvergyártás modelljei ezen eljárások absztrakt
reprezentációja.

 A legfőbb tevékenységek a specifikáció, tervezés,
implementáció, validáció és evolúció.

 Az általános szoftvergyártási modellek a gyártási
folyamat szerkezetét írják le. Pl.: vízesés modell,
evolúciós fejlesztés és komponens-alapú
szoftverfejlesztés.

 Az iteratív modellek a szoftvergyártás folyamatát
aktivitások körfolyamataként írják le.

Összefoglalás

55

Összefoglalás

 A követelménytervezés a szoftver specifikáció
megalkotásának folyamata.

 A tervezési és implementációs folyamatok a specifikációt
végrehajtható programmá transzformálják.

 A validáció során ellenőrizzük, hogy a rendszer teljesíti-e a
specifikációt és a felhasználó igényei szerint működik-e.

 Az evolúció a rendszer üzembe helyezés utáni módosítása.

 A Rational Unified Process olyan szoftvergyártási modell,
amely elválasztja a tevékenységeket a folyamat fázisaitól.

 A CASE technológiák a szoftvergyártás folyamatát
támogatják.

Összefoglalás

