
1

14.
Objektumorientált tervezés

2

Kérdések

 Hogyan lehet a szoftvert egymással
kapcsolatban lévő, önálló működésű, saját
állapottal rendelkező objektumok
halmazaként leírni?

 Mik az objektum-orientált tervezés lépései?

 Milyen típusú modellek használhatók egy
objektum-orientált terv leírására?

 Hogyan használható az UML ezen modellek
reprezentálására?

Kérdések

3

Tartalom

1. Bevezetés

2. Objektumok és objektum-osztályok

3. Az objektumorientált tervezés folyamata

4. A terv evolúciója

Tartalom

4

1. Bevezetés

 Az objektumorientált Analízis (OOA), Tervezés
(OOT) és Programozás (OOP) egymással
kapcsolatban állnak, de különböző fogalmak

 Az OOA a felhasználói környezet modelljének
kidolgozásával foglalkozik.

 Az OOT a követelményeket kielégítő rendszer
modelljének kidolgozásával foglalkozik.

 Az OOP az OOT realizálásával foglalkozik egy OO
nyelv (pl. Java, C++) segítségével.

1. Bevezetés

5

Az OOT jellemzői

 Az objektumok a való világ entitásainak
reprezentációi, amelyek önmagukat menedzselik.

 Az objektumok önállóak és saját, a külvilág számára
közvetlenül nem látható állapottal rendelkeznek.

 A rendszer funkcionalitását objektumok
szolgáltatásaiként reprezentáljuk.

 Közös adatterületek nem léteznek. Az objektumok
üzenetekkel kommunikálnak.

 Az objektumok lehetnek elosztottak, végrehajtásuk
lehet szekvenciális vagy párhuzamos.

1. Bevezetés

6

Objektumok interakciója

state o3

o3:C3

state o4

o4: C4

state o1

o1: C1

state o6

o6: C1

state o5

o5:C5

state o2

o2: C3

ops1() ops3 () ops4 ()

ops3 () ops1 () ops5 ()

1. Bevezetés

7

Az OOT előnyei

 Könnyű kezelhetőség. Az objektumok önálló
entitásokként foghatók fel.

 Az objektumok potenciálisan
újrafelhasználható komponensek.

 Sok rendszerben a való világ entitásai
könnyen és értelemszerűen képezhetők le a
rendszer objektumaira.

1. Bevezetés

8

2. Objektumok és objektum-osztályok

 A objektumok a szoftver rendszer entitásai,
amelyek a való világ és a rendszer entitásait
reprezentálják.

 Az objektum-osztályok objektumok sablonjai.
Belőlük objektumok hozhatók létre.

 Az objektum-osztályok más objektum-
osztályoktól attribútumokat és
szolgáltatásokat örökölhetnek.

2. Objektumok és objektum osztályok

9

Objektumok és objektum-osztályok

Egy objektum olyan entitás, amelynek van állapota és egy
meghatározott operáció-készlete ezen állapot felett. Az állapotot az
objektum attribútum-halmaza reprezentálja. Az objektumhoz tartozó
operációk más objektumok (kliensek) számára nyújtanak
szolgáltatásokat, melyeket azok valamilyen számítási igény
felmerülése esetén kérhetnek.
Az objektumokat valamely objektum-osztály definíciója alapján
hozzuk létre. Az objektum osztály definíciója az objektumok
számára „sablon”-ként szolgál. Tartalmazza az adott objektum-
osztályhoz tartozó összes attribútum és szolgáltatás deklarációját.

2. Objektumok és objektum osztályok

10

Az UML (Unified Modeling Language)

 Az 1980-as és ‘90-es években számos
jelölés-rendszert javasoltak az OO tervek
leírására.

 Az UML ezek egyesítéseként született.

 Az OO analízis és tervezés során használt
számos modell leírási módját tartalmazza.

 Manapság ez az OO modellezés de facto
szabványa.

2. Objektumok és objektum osztályok

11

Az alkalmazott objektum-osztálya (UML)

Employee

name: string

address: string

dateOfBirth: Date

employeeNo: integer

socialSecurityNo: string

depar tment: Dept

manager: Employee

salary: integer

status: {current, left, retired}

taxCode: integer

. . .

join ()

leave ()

retire ()

changeDetails ()

2. Objektumok és objektum osztályok

12

Az objektumok kommunikációja

 Elvileg az objektumok üzeneteken keresztül
kommunikálnak.

 Üzenetek
• A hívó objektum által kért szolgáltatás neve;

• A szolgáltatás végrehajtásához szükséges információ
másolata, valamint az eredmény tárolójának neve.

 A gyakorlatban az üzenteket gyakran eljárás-
hívással implementáljuk:
• Név = eljárás neve;

• Információ = paraméter-lista.

2. Objektumok és objektum osztályok

13

Példák üzenetekre

// Egy puffer-objektumhoz tartozó
// hívás, amely a puffer következő
// elemét adja vissza

v = circularBuffer.Get () ;

// Egy termosztát-objektumhoz tartozó

// hívás, amely beállítja a tartani kívánt
// hőmérséklet értékét

thermostat.setTemp (20) ;

2. Objektumok és objektum osztályok

14

Általánosítás és öröklés

 Az objektumok azon osztályok tagjai, amelyek az
attribútumait és az operációit definiálják.

 Az osztályok egy osztály-hierarchiába szervezhetők,
ahol egy osztály (szuper-osztály) egy vagy több
osztály (al-osztály) általánosítása lehet.

 Az al-osztály örökli a szuper-osztály attribútumait és
operációit, valamint saját metódusokat és
attribútumokat adhat ezekhez.

 Az UML-beli általánosítást az OO nyelvek
öröklésként implementálják.

2. Objektumok és objektum osztályok

15

Az általánosítás-hierarchia

Employee

Prog rammer

project
progLanguages

Mana ger

Project
Mana ger

budgetsControlled

dateAppointed

projects

Dept.
Mana ger

Strateg ic
Mana ger

dept responsibilities

2. Objektumok és objektum osztályok

16

Az öröklés előnyei

 Egy absztrakciós mechanizmus, amely
entitások osztályozására használható.

 Egy újrafelhasználási mechanizmus, amely a
tervezés és programozás szintjén is
használható.

 Az öröklési gráf alkalmazási környezetek és
rendszerek szerveződéséről szolgáltat
információt.

2. Objektumok és objektum osztályok

17

Az öröklés problémái

 Az objektum-osztályok nem „önjáróak”. A
megértésükhöz szükséges a szuper-
osztályuk ismerete is.

 A tervezők gyakran újrahasznosítják az
analízis során készített öröklési gráfot. Ez a
hatékonyság kárára válhat.

 Az analízis, tervezés és implementáció során
használt öröklési gráfok célja más és más,
ezeket egymástól függetlenül kell kezelni.

2. Objektumok és objektum osztályok

18

Az UML asszociációi

 Az objektumok és objektum-osztályok más
objektumokkal és objektum-osztályokkal
lehetnek kapcsolatban.

 A UML-ben az általánosított kapcsolatot az
asszociációval jelezzük.

 Az asszociációkon külön szöveges
információ írhatja le az asszociáció jellegét.

2. Objektumok és objektum osztályok

19

Példa: egy asszociáció-modell

Employee Depar tment

Manager

is-member-of

is-managed-by

manages

2. Objektumok és objektum osztályok

20

Konkurens objektumok

 Az objektumok önálló entitások, így
alkalmasok párhuzamos implementációra.

 Az objektum-kommunikáció üzenet-modelljét
közvetlenül lehet implementálni, ha az
objektumok egy elosztott rendszerben,
különböző processzorokon futnak.

2. Objektumok és objektum osztályok

21

Szerverek és aktív objektumok

 Szerverek
• Az objektumot párhuzamos folyamatként (szerver)

implementáljuk, ahol az objektum operációi belépési
pontok lesznek. Ha nincs hívás az objektumra, akkor az
felfüggeszti magát és várakozik további szolgáltatás-
hívásokra.

 Aktív objektumok
• Az objektumot párhuzamos folyamatként implementáljuk.

A belső állapotokat az objektum maga is
megváltoztathatja, nem kell hozzá külső hívás.

2. Objektumok és objektum osztályok

22

Példa: aktív transponder objektum

 Az aktív objektumok attribútumait
operációkkal is megváltoztathatjuk, de
autonóm módon, belső műveletekkel ezt
maguk is megtehetik.

 Egy transponder objektum egy repülőgép
pozíció adatait szolgáltatja. A pozíciót egy
műholdas rendszer segítségével határozza
meg: az objektum periodikusan változtatja a
pozíció attribútumát a műholdas
háromszögelés segítségével.

2. Objektumok és objektum osztályok

23

Példa: aktív transponder objektum

class Transponder extends Thread {

Position currentPosition ;
Coords c1, c2 ;
Satellite sat1, sat2 ;
Navigator theNavigator ;

public Position givePosition ()
{

return currentPosition ;
}

public void run ()
{

while (true)
{

c1 = sat1.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

2. Objektumok és objektum osztályok

24

Java szálak

 A Jáva szálai (thread) egyszerű módszert
adnak konkurens objektumok
implementálására.

 A szálnak tartalmazni kell egy run()
metódust, amit a Java futtató rendszere indít
el.

 Az aktív objektumok tipikusan egy végtelen
ciklust tartalmaznak.

2. Objektumok és objektum osztályok

25

3. Az objektumorientált tervezés folyamata

 Strukturált tervezési módszer, melynek során
több, különböző rendszermodell kerül
kifejlesztésre.

 Ezen modellek fejlesztése és karbantartása
nagy erőfeszítést igényel, ami kis rendszerek
esetén nem kifizetődő.

 Nagy rendszerek esetén, amelyeket több
csoport fejleszt, a tervezési modellek
alapvető kommunikációs mechanizmust
biztosítanak.

3. Az objektumorientált tervezés folyamata

26

A folyamat elemei

 A legfontosabb tevékenységek:

• A rendszer kontextusának és felhasználási
módozatainak definiálása;

• A rendszerarchitektúra tervezése;

• Az alapvető rendszerobjektumok
meghatározása;

• A tervezési modellek kidolgozása;

• Az objektum interfészek specifikálása.

3. Az objektumorientált tervezés folyamata

27

Példa: Meteorológiai rendszer

A meteorológiai térképgeneráló rendszer meteorológiai térképeket
generál távoli meteorológiai állomások és más források (pl.
megfigyelők, léggömbök, műholdak) adatainak felhasználásával.
A meteorológiai állomások adataikat a körzeti számítógépekhez
továbbítják azok kérésére.
A körzeti számítógépes rendszer validálja az összegyűjtött adatokat
és összesíti más forrásokból származó adatokkal. Az integrált
adatokat archiválják. Az archívum adatainak és egy digitalizált térkép
adatbázisnak felhasználásával helyi időjárási térképeket generálnak.
A térképek speciális térkép-nyomtatók felhasználásával
kinyomtathatók, vagy különféle formátumokban kijelezhetők.

3. Az objektumorientált tervezés folyamata

28

3.1 A rendszer kontextusa és
felhasználási módozatai

 A fejlesztendő szoftver és külső környezete közti
kapcsolatok feltérképezése

 A rendszer kontextusa
• Statikus modell, amely leírja a környezetben levő más

rendszereket. Alrendszer (subsystem) modellek
használhatók más rendszerek jelzésére. A következő
ábra a meteorológiai állomás (weather station) körüli
rendszereket mutatja.

 A rendszerhasználat modellje
• Dinamikus modell, amely a rendszer és környezetének

interakcióját mutatja be. Use-case modellek
használhatók az interakciók leírására.

3. Az objektumorientált tervezés folyamata

29

Réteges szerkezet

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Data collection layer where objects
are concerned with acquiring data
from remote sources

Data processing layer where objects
are concerned with checking and
integ rating the collected data

Data archiving layer where objects
are concerned with storing the data
 for future processing

Data display layer where objects are
concerned with preparing and
presenting the data in a human-
readable form

Kijelző réteg, ahol az objektumok
célja az adatok emberi befogadásra
alkalmas formára hozása.

Archiváló réteg, ahol az objektumok
célja az adatok tárolása későbbi
felhasználás céljára.

Adatfeldolgozó réteg, ahol az
objektumok célja a begyűjtött adatok
ellenőrzése és integrálása.

Adatgyűjtő réteg, ahol az
objektumok távoli forrásokból adatok
begyűjtése.

3. Az objektumorientált tervezés folyamata

30

A meteorológiai térképgeneráló rendszer
alrendszerei

Data
storage

User
inter face

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Weather
station

Satellite

Comms

Balloon

Observer

Map store Data store

Data
storage

Map

User
inter face

Map
display

Map
printer

Data
checking

Data
integ ration

meteorológiai állomás

3. Az objektumorientált tervezés folyamata

31

Use-case modellek

 Use-case modellek használatával a rendszer
valamennyi interakciója leírandó.

 A use-case modellek a rendszer
szolgáltatásait ellipszisek segítségével
jelölik. Az interakcióban résztvevő entitást
pálcikaember jelzi.

3. Az objektumorientált tervezés folyamata

32

A meteorológiai állomás use-case-ei

Star tup

Shutdown

Repor t

Calibrate

Test

3. Az objektumorientált tervezés folyamata

33

Egy use-case leírása

System Meteorológiai állomás

Use-case Adatküldés (Report)

Actors Időjárás adatgyűjtő rendszer (data collection), Meteorológiai állomás (weather station)

Data A meteorológiai állomás elküldi a műszerek által az előző adatgyűjtési periódus alatt
szerzett adatok összesítését az időjárás adatgyűjtő rendszernek. Az elküldött adatok a
következők: maximum, minimum és átlagos hőmérséklet, maximum, minimum és átlagos
légnyomás, maximum, minimum és átlagos szélsebesség, teljes csapadékmennyiség,
valamint a szélirány 5 perces intervallumokban mintavételezve.

Stimulus Az időjárás adatgyűjtő rendszer modemes kapcsolatot hoz létre a meteorológiai állomással
és kéri az adatok elküldését.

Response Az összegzett adatok elküldése az időjárás adatgyűjtő rendszerbe.

Comments A meteorológiai állomásokat általában óránként egyszer kérdezik le, de ez a gyakoriság
állomásról állomásra más és más érték lehet és a jövőben változhat.

3. Az objektumorientált tervezés folyamata

34

3.2 Az architektúra tervezése

 A rendszer és környezete közötti interakciók
megértése után ez az információ felhasználható a
rendszer-architektúra tervezésére.

 A meteorológiai állomás céljára egy réteges
szerkezet alkalmas :
• Interfész réteg: kommunikáció kezelése;

• Adatgyűjtő réteg: a műszerek kezelése;

• Műszerek réteg: adatgyűjtés.

 Egy architektúra-modell ne tartalmazzon több, mint
7 entitást.

3. Az objektumorientált tervezés folyamata

35

A meteorológiai állomás architektúrája

meteorológiai állomás

Külső
kommunikáció

kezelése

Időjárási adatok
gyűjtése és
összegzése

Műszerek
nyers adatok

mérésére

«subsystem»
Adatgyűjtő

«subsystem»
Műszerek

«subsystem»
Interfész

3. Az objektumorientált tervezés folyamata

36

3.3 Objektumok azonosítása

 Az objektumok (vagy inkább objektum-
osztályok) identifikációja, azonosítása az OO
tervezés legnehezebb lépése.

 Az objektumok identifikálására nincs
„mágikus módszer”. A rendszertervező
tapasztalatától, gyakorlatától, valamint az
alkalmazási környezetről szerzett tudásától
függ.

 Az objektum-identifikáció iteratív eljárás.
Nagyon valószínűtlen, hogy elsőre sikerül.

3. Az objektumorientált tervezés folyamata

37

Az identifikáció lehetséges módszerei

 A rendszer természetes nyelvi leírásán végzett
nyelvi elemzés (A HOOD OOT módszerben
használt)

 Az alkalmazási környezetbeli kézzelfogható dolgok
alapján.

 Viselkedési megközelítés: mely objektumok mely
viselkedésben vesznek részt.

 Szcenárió-alapú analízis: minden szcenárióban
azonosítjuk az objektumokat, attribútumokat és a
metódusokat.

3. Az objektumorientált tervezés folyamata

38

A meteorológiai állomás leírása

A meteorológiai állomás szoftver-vezérelt műszerek együttese,
amely adatokat gyűjt, adatfeldolgozást végez, valamint továbbítja
ezen adatokat további feldolgozás céljából. A műszerek között
megtalálhatók hőmérők, szélirány- és szélsebességmérő,
barométer és csapadékmérő. Az adatok gyűjtése periodikusan
történik.
Amikor adatok továbbítására kérés érkezik, a meteorológiai
állomás feldolgozza és összegzi az összegyűjtött adatokat. Az
összegzett időjárási adatok a térképező számítógépbe
továbbítódnak, amikor erre kérés érkezik.

3. Az objektumorientált tervezés folyamata

39

A meteorológiai állomás objektum
osztályai (nem teljes lista)

 Hőmérő, szélmérő, barométer
• Az alkalmazási környezet objektumai, kézzel

fogható dolgok. „Hardver” objektumok, amelyek a
rendszerben található műszerekhez kapcsolódnak.

 Meteorológiai állomás
• A meteorológiai állomás alapvető interfésze a

környezete felé. A use-case-ekben identifikált
interakciókat tükrözi.

 Időjárási adatok
• A műszerekből gyűjtött összesített adatok.

3. Az objektumorientált tervezés folyamata

40

A meteorológiai állomás objektum
osztályai

identifier

reportWeather ()

calibrate (instruments)

test ()

startup (instruments)

shutdown (instruments)

WeatherStation

test ()

calibrate ()

Ground

thermometer

temperature

Anemometer

windSpeed
windDirection

test ()

Baromet er

pressure

height

test ()

calibrate ()

WeatherData

airTemperatures
groundTemperatures

windSpeeds

windDirections

pressures
rainfall

collect ()

summarise ()

3. Az objektumorientált tervezés folyamata

41

További objektumok és objektumok
finomítása

 Az alkalmazási környezetről gyűjtött információk
alapján további objektumok és operációk
azonosítása
• A meteorológiai állomásoknak egyéni azonosító kell;

• A meteorológiai állomások távoli helyeken üzemelhetnek,
így a műszerek meghibásodását automatikusan jelenteni
kell. Az önellenőrzéshez további attribútumok és
operációk kellenek.

 Aktív vagy passzív objektumok
• Ebben az esetben az objektumok passzívak, az

adatgyűjtést kérésre, és nem autonóm módon végzik.
Előny: rugalmas rendszer; hátrány: időzítések azonosak.

3. Az objektumorientált tervezés folyamata

42

3.4 Tervezési modellek

 A tervezési modellek az objektumokat,
objektum-osztályokat, valamint ezen
entitások közötti kapcsolatokat írják le.

 A statikus modellek a rendszer statikus
struktúráját írják le objektum-osztályok és
relációik segítségével.

 A dinamikus modellek az objektumok közötti
dinamikus interakciókat írják le.

3. Az objektumorientált tervezés folyamata

43

Példák tervezési modellekre

 Alrendszer (sub-system) modellek, amelyek az
objektumok koherens alrendszerekre való logikus
csoportosítását adják.

 A szekvencia-diagramok az objektumok közötti
interakciók sorozatát írják le.

 Az állapotgép-modellek azt írják le, hogy az egyes
objektumok hogyan változtatják állapotukat
eseményekre reagálva.

 Egyéb modellek: use-case modellek, aggregációs
modellek, általánosítási modellek, stb...

3. Az objektumorientált tervezés folyamata

44

Alrendszer modellek

 A terv logikusan kapcsolódó csoportokba
való szervezését mutatja be.

 Az UML-ben ezeket csomagok (package)
formájában használjuk. Ez egy logikai
modell, a rendszerben az objektumok valódi
csoportosítása ettől különbözhet.

3. Az objektumorientált tervezés folyamata

45

A meteorológiai állomás alrendszerei

«subsystem»
Inter face

«subsystem»
Data collection

CommsController

WeatherStation

WeatherData

Instrument
Status

«subsystem»
Instruments

Air
 thermometer

Ground
 thermometer

RainGauge

Barometer

Anemometer

WindVane

3. Az objektumorientált tervezés folyamata

46

Szekvencia-modellek

 Az objektum-interakciók sorozatát mutatják
• Az objektumok az ábra tetején, vízszintesen

egymás mellett vannak elhelyezve;

• Az idő függőlegesen, fentről lefelé telik;

• Az interakciókat (szöveges) nyilak jelzik,
különböző formájú nyilak különböző típusú
interakciókat reprezentálnak;

• Az objektum vonalán egy vékony téglalap jelzi
azt az időtartamot, amíg az objektum a
rendszert vezérlő objektum.

3. Az objektumorientált tervezés folyamata

47

Az adatgyűjtés-szekvencia

:CommsController

request (repor t)

acknowledge ()
repor t ()

summarise ()

reply (repor t)

acknowledge ()

send (repor t)

:WeatherStation :WeatherData

3. Az objektumorientált tervezés folyamata

48

Állapotdiagramok (statechart)

 Hogyan reagál az objektum különböző szolgáltatás-
kérésekre, valamint milyen állapot-átmeneteket
triggerelnek ezek a kérések
• Ha az objektum Shutdown állapoban van, akkor csak a

Startup() üzenetre reagál;

• A Waiting állapotban az objektum további üzenetekre vár:

• A reportWeather() üzenetre a rendszer a Summarising
állapotba megy át;

• A calibrate() üzenetre a rendszer a Calibrating állapotba
megy át;

• A Collecting állapotba óraütésre (clock üzenet) megy át.

3. Az objektumorientált tervezés folyamata

49

A meteorológiai állomás állapot-
diagramja

transmission done

calibrate ()

test ()star tup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

repor tWeather ()

Shutdown Waiting Testing

Transmitting

Collecting

Summarising

Calibrating

3. Az objektumorientált tervezés folyamata

50

3.5 Objektum interfészek specifikációja

 Az objektumok interfészeit definiálni kell, hogy az
objektumok és más komponensek párhuzamosan
fejleszthetők legyenek.

 A tervezés során el kell kerülni az interfész
reprezentáció tervezését. Ezt az objektumba kell
rejteni.

 Az objektumoknak számos interfésze lehet, amelyek
a szolgáltatott különféle metódusokra jellemzőek.

 Az UML-ben osztály-diagramot használunk az
interfészek specifikálására, de pl. a Java nyelv is
használható e célra.

3. Az objektumorientált tervezés folyamata

51

A meteorológiai állomás interfésze

interface WeatherStation {

public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

3. Az objektumorientált tervezés folyamata

52

4. A terv evolúciója

 Az objektumokba való információ-rejtés
következménye, hogy az objektumon végrehajtott
változások nem befolyásolnak más objektumokat
előre nem látható módon.

 Példa:
• légszennyezettség-mérést kell a meteorológiai állomás

szolgáltatásaihoz adni (a levegő mintavételezéséből
kiszámítja az atmoszférában jelenlevő különféle
szennyező anyagok mennyiségét).

• A légszennyezettség-adatokat az időjárási adatokkal
együtt továbbítjuk.

4. A terv evolúciója

53

A szükséges változtatások

 Hozzáadjuk az Air quality objektum-osztályt
a WeatherData mellé.

 A WeatherStation objektum-osztályt
kiegészítjük a reportAirQuality operációval. A
vezérlő szoftvert kiegészítjük a
szennyezettség-értékek gyűjtésével.

 A légszennyezést mérő műszereket
jelképező objektumokat adunk a
rendszerhez.

4. A terv evolúciója

54

Légszennyezés-monitorozás

NOData
smok eData
benz eneData

collect ()
summarise ()

Air quality

identifier

repor tWeather ()
repor tAirQuality ()
calibrate (instruments)
test ()
star tup (instruments)
shutdown (instruments)

WeatherStation

Pollution monitoring instruments

NOmeter SmokeMeter

BenzeneMeter

4. A terv evolúciója

55

 Az OOT olyan tervezési megoldás, ahol a
komponenseknek saját állapotaik és operációik
vannak.

 A objektumoknak rendelkezniük kell létrehozó
(constructor) és megfigyelő (inspection)
operációkkal. Ezek más objektumok számára
biztosítanak szolgáltatásokat.

 Az objektumok soros vagy párhuzamos módon is
implementálhatók.

 Az UML (Unified Modeling Language) számos
jelölési módot biztosít különféle objektum-modellek
definiálásához.

Összefoglalás

4. A terv evolúciója

56

Összefoglalás

 Az objektum-orientált tervezési folyamat
során számos különböző objektum-modellt
hozunk létre. Ezek statikus vagy dinamikus
rendszermodellek lehetnek.

 Az objektumok interfészeit precízen definiálni
kell pl. egy programozási nyelv (pl. Java)
segítségével.

 Az objektum-orientált tervezés nagy
valószínűséggel leegyszerűsíti a rendszer
evolúcióját.

4. A terv evolúciója

