
1

22.
Verifikáció és validáció



2

Kérdések

 Mi a szoftver verifikáció és validáció, mi a különbség 
köztük?

 Mi a program-vizsgálati eljárás, mi a szerepe a 
verifikációban és validációban?

 Mi a statikus analízis, hogyan használható ez, mint 
verifikációs technika?

 Mi a Cleanroom szoftverfejlesztési eljárás?

Kérdések



3

Tartalom

1. Bevezetés

2. A verifikáció és validáció tervezése

3. Szoftver vizsgálatok

4. Automatizált statikus analízis

5. Cleanroom szoftverfejlesztés

Tartalom



4

 Verifikáció: 
„Jó minőségű terméket fejlesztünk?”
(jól fejlesztünk?)

 A szoftver teljesítse a specifikációt.

 Validáció:
„A megfelelő terméket fejlesztjük?”
(jót fejlesztünk?)

 A szoftver azt csinálja, amit a felhasználó tényleg 
akar.

1. Bevezetés

1. Bevezetés



5

 Az egész életciklusra jellemző.

• A V & V-t a szoftver fejlesztés minden lépésénél 
alkalmazni kell.

 Két fő cél:

• A rendszerbeli hibák felfedezése.

• Annak felmérése, hogy a rendszer hasznos-e 
és használható-e a felhasználási környezetben.

A V & V eljárás

1. Bevezetés



6

A V & V célja

 A verifikáció és validáció a szoftver iránti 
bizalmi alapot teremt:

 A szoftver el tudja látni a feladatát.

 NEM azt jelenti, hogy teljesen hibamentes.

 Azt jelenti, hogy elég jó ahhoz, hogy ellássa 
feladatát.

 A feladat típusa határozza meg, milyen 
mértékű bizalom kell.

1. Bevezetés



7

A bizalmi szint

 A rendszer céljától, a felhasználók 
elvárásaitól, valamint a piaci viszonyoktól 
függ.
• A szoftver célja

• A bizalmi szint függ attól, hogy mennyire kritikus a 
szoftver a szervezet számára.

• Felhasználó elvárások
• A felhasználóknak bizonyos szoftverekkel szemben 

nagyon alacsony elvárásaik vannak.

• Piaci környezet
• A gyors piacra dobás fontosabb lehet, mint a hibák 

megtalálása.

1. Bevezetés



8

 Szoftvervizsgálatok. Problémák feltárása a 
rendszer statikus reprezentációjának 
analízise segítségével (statikus V & V). 
• Kiegészíthető eszköz-alapú dokumentum- és 

forráskód-analízissel.

 Szoftvertesztelés. Kísérletezés és a termék 
viselkedésének megfigyelése (dinamikus V & 
V)
• A rendszert teszt-adatokkal futtatva működés 

közben figyeljük a viselkedését.

Statikus és dinamikus V & V

1. Bevezetés



9

Statikus és dinamikus V&V

Formal

specifica tion

High-level

design

Requir ements

specifica tion

Detailed

design
Program

Prototype Prog ram
testing

Software
inspections

Szoftver 
vizsgálat

Követelmény
specifikáció

Magas-szintű 
terv

Formális 
specifikáció

Részletes
terv

Szoftver

Prototípus Szoftver-
tesztelés

1. Bevezetés



10

 A hibák jelenlétét és NEM hiányát jelezheti.

 Az egyetlen V & V technika nem-funkcionális 
követelmények ellenőrzésére, hiszen a 
szoftvert végre kell hajtani ahhoz, hogy 
lássuk, miként viselkedik.

 Statikus ellenőrzéssel együtt célszerű 
használni, hogy teljes V&V lefedettséget 
kapjunk. 

Szoftvertesztelés

1. Bevezetés



11

 Hiányosságtesztelés (hibatesztelés)

• A tesztek rendszerhibák feltárására.

• A jó teszt feltárja a rendszerben lévő hibák 
jelenlétét: program és specifikáció közötti 
ellentmondás.

 Validációs tesztelés

• Célja annak bizonyítása, hogy a szoftver megfelel a 
megrendelő igényeinek.

• A jó teszt megmutatja, hogy a rendszer 
teljesítménye és megbízhatósága valós 
körülmények között is megfelelő-e.

A szoftvertesztelés típusai

1. Bevezetés



12

 A hibatesztelés és a hibakeresés különböző 
eljárások.
• A hibatesztelés (V & V) feladata a programhibák 

jelenlétének feltárása.

• A hibakeresés ezen hibák lokalizálásával és 
javításával foglalkozik.

 A hibák megtalálása érdekében a hibakeresés 
során a program viselkedéséről hipotéziseket 
állítunk fel, amiket ellenőrzünk.
• Pl. túlcímzések, nullával osztás, végtelen ciklusok

Hibatesztelés és hibakeresés

1. Bevezetés



13

A hibakeresés folyamata

Locate
error

Design
error repair

Repair
error

Retest
prog ram

Test

results
Specification

Test

cases
Teszt

eredmények Specifikáció 

Hiba 
lokalizálása

Hibajavítás
tervezése

Hiba
javítása

Teszt
esetek

Újra 
tesztelés

1. Bevezetés



14

 A tesztelési és vizsgálati eljárások sikere érdekében 
körültekintő tervezésre van szükség.

 A tervezést már a fejlesztés korai fázisában el kell 
kezdeni.

 A terv határozza meg a statikus vizsgálat és a 
tesztelés helyes egyensúlyát.

 A V & V tervezése a tesztelési eljárás irányelveit 
fogalmazza meg, nem kell a termék tesztelését itt 
leírni.

2. A V & V tervezése

2. A V&V tervezése



15

A fejlesztés V-modellje

Követelmény-
specifikáció

Rendszer-
specifikáció

Rendszer-
tervezés

Részletes
tervezés

Részegységek
tervezése és

tesztelése

Működtetés Végteszt
Rendszer-
integráció

teszt

Alrendszer-
integráció

teszt

Végteszt-
terv

Rendszer-
integráció
tesztelési 

terve

Alrendszer-
integráció
tesztelési 

terve

2. A V&V tervezése



16

A szoftvertesztelési terv struktúrája

 A tesztelő eljárás.

 Követelmények követhetősége.

 Tesztelt elemek.

 A tesztelés menetrendje.

 A tesztek rögzítésének eljárása.

 Hardver és szoftver szükségletek.

 Kényszerek.

2. A V&V tervezése



17

A szoftvertesztelési terv

A tesztelő eljárás.
A tesztelési eljárás főbb fázisainak leírása.

Követelmények követhetősége.
A teszteket úgy kell megtervezni, hogy minden követelményt külön 
lehessen tesztelni. 

Tesztelt elemek.
A fejlesztési eljárás azon elemeit specifikáljuk, amelyeket tesztelni kell.

A tesztelés menetrendje.
A tesztelés menetrendje a szükséges erőforrások foglalásával. 
Természetesen szorosan kapcsolódik a teljes projekt ütemezéséhez.

A tesztek rögzítésének eljárása.
A teszteket nemcsak futtatni kell, hanem az eredményeket 
szisztematikusan rögzíteni is. A tesztelési eljárásnak felülvizsgálhatónak 
kell lenni.

Hardver és szoftver szükségletek.
A szükséges szoftver eszközök listája a becsült hardver használattal 
együtt.

Kényszerek.
A tesztelési eljárást befolyásoló kényszerek, pl. munkaerő hiány.

2. A V&V tervezése



18

3. Szoftvervizsgálatok

 Emberek vizsgálják a forrás valamilyen 
reprezentációját anomáliák és hibák után 
kutatva.

 A vizsgálathoz nem kell a rendszert futtatni, így 
implementáció előtt  is megtehető.

 A rendszer bármely reprezentációja vizsgálható: 
követelmények, terv, konfigurációs adatok, teszt 
adatok, stb.

 A programhibák feltárásának hatékony eszköze.

3. Szofver vizsgálatok



19

Szoftvervizsgálatok

 A reprezentáció felülvizsgálatának formális 
módszere

 Célja kizárólag a hibák jelenlétének jelzése, 
(nem pedig javítása).

 A hibák lehetnek (pl.)

• logikai hibák;

• anomáliák a kódban, amik hibás állapotot 
jelezhetnek (pl. nem inicializált változó);

• egyes szabványok nem teljesítése.

3. Szofver vizsgálatok



20

A szoftvervizsgálat típusai

 Dokumentum átvilágítás

• Követelmények
• Felhasználói

• Rendszer

• Tervek
• Rendszer, alrendszer, modul

• Teszt

 Program (forráskód) átvilágítás

 Automatizált forráskód elemzés

 Formális verifikáció

3. Szofver vizsgálatok



21

A vizsgálat előfeltételei

 Precíz, teljes reprezentáció.

 A csoport tagjainak ismerni kell a szervezet 
működési szabályait.

 Szintaktikailag helyes kód, vagy valamilyen más 
rendszer-reprezentáció.

 Egy hiba-ellenőrző listát kell készíteni.

 A menedzsmentnek el kell fogadni, hogy a szoftver 
vizsgálat növeli a költségeket.

 A menedzsment ne használja a szoftver vizsgálatot 
a dolgozók értékelésére (pl. ki hibázott).

3. Szofver vizsgálatok



22

A vizsgálat hatékonysága

 Egyetlen vizsgálat több hibát is feltárhat. A 
tesztelés során egy hiba elfedhet más 
hibákat, így ott többszöri végrehajtás kell.

 Az újrafelhasználás és a programozói 
tapasztalat miatt a felülvizsgálók 
valószínűleg találkoztak már a gyakran 
előforduló hibákkal.

3. Szofver vizsgálatok



23

SW vizsgálatok és SW tesztelés

 A vizsgálatok és a tesztelés egymást kiegészítő 
verifikációs technikák.

 A V & V eljárás alatt mindkettő használata 
ajánlatos.

 A vizsgálat ellenőrzi, hogy a specifikációnak 
megfelel-e, de azt nem, hogy a valós 
felhasználói igényeket kielégíti-e.

 A vizsgálatok nem tudják ellenőrizni a nem-
funkcionális jellemzőket, pl. teljesítmény, 
használhatóság, stb.

3. Szofver vizsgálatok



24

A vizsgálat folyamata

Inspection

meeting

Individual

pr epar ation

Overview

Planning

Rework

Follow-up

Tervezés 

Áttekintés  

Elő-
készületek

Vizsgálati 
ülés

Átdolgozás 

Követés 

3. Szofver vizsgálatok



25

A vizsgálat folyamata

 A rendszer ismertetése a felülvizsgáló csoport 
számára.

 A csoport tagjai megkapják a kódot és az egyéb 
kapcsolódó dokumentumokat.

 A vizsgálat megtörténik, a felfedezett hibákat 
feljegyzik.

 A felfedezett hibák javítása érdekében a szükséges 
módosítások elvégzése.

 Szükség esetén újabb vizsgálat.

3. Szofver vizsgálatok



26

Szerepek a vizsgálat során

Szerző vagy tulajdonos A programozó vagy tervező, aki a program vagy 
egyéb dokumentum létrehozásáért felelős. Az ő 
felelőssége a vizsgálat során feltárt hibák javítása 
is.  

Vizsgáló Hibák, hiányosságok, inkonzisztenciák keresése a 
programokban és dokumentációban. Esetleg a 
vizsgáló bizottság feladatkörén kívül álló 
kérdéseket is felvethet. 

Felolvasó  A vizsgálati ülésen bemutatja a kódot vagy 
dokumentumot.  

Írnok A vizsgálati ülés eredményeit rögzíti. 

Elnök vagy moderátor  Menedzseli és segíti a vizsgálat menetét. Az 
eredményeket a fő moderátornak jelenti. 

Fő moderátor A vizsgálati folyamat javításáért, a hiba-ellenőrző 
lista frissítéséért, eszközökért, stb. felelős. 

3. Szofver vizsgálatok



27

Ellenőrző listák

 A gyakori hibákat tartalmazó ellenőrző lista 
használandó a vizsgálat levezetésére.

 A hiba-ellenőrző listák programnyelv-
specifikusak és az adott programnyelv 
karakterisztikus hibáit tartalmazzák.

 Általában minél gyengébb a típus-ellenőrzés, 
annál hosszabb az ellenőrző lista.

 Példák: inicializálás, konstansok elnevezése, 
kilépés hurokból, tömbhatár túllépés, stb.

3. Szofver vizsgálatok



28

Ellenőrző lista 1

Adathibák Minden változó inicializálva van, mielőtt használnánk? 
Az összes konstansnak van neve? 
A tömbök felső indexe a tömb méretével egyenlő vagy 
ennél eggyel kisebb kell legyen? 
Karakter-tömbök használata esetén a delimiter 
egyértelműen definiálva van? 
Előfordulhat-e buffer overflow?  

Vezérlési hibák Minden feltételes utasításra: helyes a feltétel? 
Minden ciklus biztosan befejeződik? 
Az utasítás-blokkokat helyesen zárójeleztük? 
Case utasításnál minden lehetőséget kimerítettünk? 
Ha minden case utasítás után break kell, akkor ezek jelen 
vannak? 

I/O hibák Minden bemenő változót használunk? 
Minden kimeneti változónak adunk értéket visszatérés 
előtt? 
Váratlan bementi adatok okozhatnak-e hibát? 

3. Szofver vizsgálatok



29

Ellenőrző lista 2

Interfész hibák Minden függvény- és metódus-hívásnak megfelelő számú 
paramétere van? 
A paraméter-típusok megfelelők?  
A paraméterek sorrendje megfelelő?  
Ha több komponens osztott memóriát használ, akkor  
ugyanolyan struktúrájú memória-modellt használnak? 

Tárolás-
menedzsment 
hibák 

Láncolt szerkezetek módosítása esetén minden mutató 
megfelelően módosítva van? 
Dinamikus memóriahasználat esetén helyes-e az allokáció? 
A nem használt memória explicit módon fel van-e 
szabadítva? 

Kivétel-kezelési 
hibák 

Minden lehetséges hibalehetőség figyelembe lett véve? 

3. Szofver vizsgálatok



30

A vizsgálat sebessége

 500 utasítás/óra az áttekintés során.

 125 forrás utasítás/óra az egyéni előkészületek 
alatt.

 90-125 utasítás/óra vizsgálható az ülésen.

 A vizsgálat drága!

 Pl.: 500 sor megvizsgálása kb. 40 ember óra 
igényű, ami kb. 500 eFt.

 Így is olcsóbb lehet, mint a komponens 
tesztelés.

3. Szofver vizsgálatok



31

4. Automatizált statikus analízis

 A statikus analizátorok a forrás kódok 
feldolgozására szolgáló szoftver eszközök.

 A program szövegének elemzésével 
potenciális hibalehetőségek felfedezésére 
szolgálnak, amelyeket a V & V csoporttal 
tudatnak.

 Hasznos segédeszközök (kiegészítők) a 
vizsgálathoz, de nem helyettesítik a 
vizsgálatot.

4. Automatizált statikus analízis



32

Statikus analízis ellenőrző lista

Hiba-osztály Statikus analízis vizsgálat

Adat-hiba Változók inicializálása használatuk előtt
Deklarált, de nem használt változó
Két értékadás közben nem használt változó
Lehetséges tömbhatár-túllépés
Nem deklarált változók

Vezérlési hiba Nem elérhető kódrészlet
Ugrás hurokba

I/O hiba Kimeneti változónak két kimenet nincs 
értékadása

Interfész hiba Paraméter típus konfliktus
Paraméterek száma nem megfelelő
Nem használt függvény-értékek
Nem hívott függvények és eljárások

Tárolás-menedzsment hiba Mutató értékadás hiánya
Mutató aritmetika

4. Automatizált statikus analízis



33

A statikus analízis lépései

 Vezérlés analízis. Hurkok többszörös 
belépési vagy kilépési pontokkal, nem 
elérhető kód, stb.

 Adathasználat analízis. Nem inicializált 
változók, többször írt változók közbülső 
értékadás nélkül, deklarált, de nem használt 
változók, stb.

 Interfész analízis. Konzisztens eljárás-
deklaráció és használat.

4. Automatizált statikus analízis



34

A statikus analízis lépései

 Információ-folyam analízis. A kimenő 
változók függőségeinek feltárása. 
Önmagában nem tud anomáliákat detektálni, 
de kijelöl kódrészleteket a vizsgálat céljára.

 Útvonal analízis. Útvonalakat keres a 
program végrehajtása során és felsorolja a 
végrehajtott utasításokat. Hasznos lehet a 
vizsgálat során.

!!! Az utolsó két lépés rengeteg információt 
generál, óvatosan használandók !!!

4. Automatizált statikus analízis



35

LINT statikus analízis

138% more lint_ex.c 
#include <stdio.h> 
printarray (Anarray) 
 int Anarray; 
{   printf(“%d”,Anarray);  } 
 
main () 
{ 
 int Anarray[5]; int i; char c; 
 printarray (Anarray, i, c); 
 printarray (Anarray) ; 
} 
 
139% cc lint_ex.c 
140% lint lint_ex.c 
 
lint_ex.c(10): warning: c may be used before set 
lint_ex.c(10): warning: i may be used before set 
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10) 
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10) 
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11) 
printf returns value which is always ignored  

 

4. Automatizált statikus analízis



36

A statikus analízis felhasználása

 Nagyon hasznos olyan nyelveknél, ahol a 
típusellenőrzés gyenge és így a fordító sok 
hibát nem tud észlelni (pl. C).

 Kevésbé hasznos erős típusellenőrzéssel 
ellátott nyelvek esetén, ahol sok hiba fordítás 
közben kiderül (pl. Java).

4. Automatizált statikus analízis



37

A verifikáció és formális módszerek

 Formális módszerek alkalmazhatók, ha a 
rendszer matematikai modellje adott.

 Ez az alapvető statikus analízis technika.

 A specifikáció matematikai analízise, 
formális indoklás: a program megfelel a 
matematikai specifikációnak.

4. Automatizált statikus analízis



38

Formális módszerek előnyei

 A matematikai specifikáció elkészítéséhez a 
követelmények részletes elemzése 
szükséges, ami valószínűleg felfedi a 
hibákat.

 Implementációs hibákat még a tesztelés előtt 
fel tud fedni a program és a specifikáció 
együttes vizsgálatával. 

4. Automatizált statikus analízis



39

A formális módszerek hátrányai

 Speciális jelölésrendszer használata 
szükséges, amelyet az alkalmazási 
környezet szakértői nem értenek.

 A specifikáció kidolgozása nagyon drága. 
Még drágább bizonyítani, hogy a program 
megfelel a specifikációnak.

 Más V & V módszerek alkalmazásával is el 
lehet jutni ugyanolyan bizalmi szintre.

4. Automatizált statikus analízis



40

 A név a félvezető-gyártásban használt 
'Cleanroom‘ eljárásból ered. Filozófia: a 
hibák elkerülése, nem a hibák eltávolítása.

 A következő elveken alapul:

• Inkrementális fejlesztés;

• Formális specifikáció;

• Statikus verifikáció helyességbizonyítással;

• Statisztikus tesztelés a program 
megbízhatóságának meghatározásához.

5. A Cleanroom szoftverfejlesztés

5. A Cleanroom szoftverfejlesztés



41

A Cleanroom eljárás

Construct

structur ed
program

Define

softw are
increments

For mally

verify
code

Integ rate

increment

For mally

specify
system

Develop

oper ational
profile

Design

sta tistical
tests

Test

integ rated
system

Error rewor kRendszer 
formális 

specifikálása

Működési
profil

kidolgozása 

Szoftver
inkrementumok

definiálása

Strukturált
program
készítése

Kód
formális

verifikálása

Inkrementumok
integrálása

Statisztikus
tesztek

tervezése

Integrált
rendszer

tesztelése

Hibajavítás

5. A Cleanroom szoftverfejlesztés



42

A Cleanroom eljárás jellemzői

 Formális specifikáció állapot-átmeneti 
modellekkel.

 Inkrementális programfejlesztés a 
megrendelő prioritásai szerint.

 Strukturált programozás – korlátozott 
vezérlési és absztrakciós eszközök 
alkalmazása.

 Statikus verifikáció szigorú vizsgálatokkal.

 Statisztikus tesztelés (működési profil 
alapján)

5. A Cleanroom szoftverfejlesztés



43

Formális specifikáció és vizsgálatok

 Az állapotgép egy rendszerspecifikáció. Az 
ellenőrző eljárás ezzel a modellel veti össze a 
programot.

 A programozási modell olyan, hogy a modell és 
a rendszer közötti kapcsolat világos.

 Matematikai állítások növelik a vizsgálati 
eljárás bizalmi szintjét. Például:

• Biztonságos állapot mindig elérhető

• Minden állapot elhagyható

• Minden állapot véges ideig áll fenn

5. A Cleanroom szoftverfejlesztés



44

 Specifikációs csoport. A rendszer-
specifikáció kidolgozásáért és 
karbantartásáért felel.

 Fejlesztési csoport. A szoftver fejlesztéséért 
és verifikálásáért felelős. A szoftvert ebben a 
fázisban nem futtatják, még le sem fordítják.

 Tanúsító csoport. A fejlesztés után a 
szoftveren végrehajtandó statisztikus tesztek 
kidolgozásáért felelős. 

A Cleanroom eljárásban részt vevő 
csoportok

5. A Cleanroom szoftverfejlesztés



45

 A Cleanroom eljárással készült rendszerekben 
nagyon kevés hiba van. 

 Nem drágább, mint más módszerek.

 Kevesebb hiba, mint a „hagyományos” fejlesztési 
eljárásoknál.

 Ennek ellenére nem használt széles körben. Kérdés: 
hogyan lehet olyan környezetbe átültetni, hol 
kevésbé képzett és motivált szoftvermérnökök 
dolgoznak?

A Cleanroom eljárás értékelése

5. A Cleanroom szoftverfejlesztés



46

Összefoglalás 

 A verifikáció és validáció nem ugyanazt 
jelenti.  A verifikáció a specifikáció 
teljesítését mutatja, a validáció pedig azt, 
hogy a program kielégíti a felhasználó 
igényeit.

 A tesztelési eljárást tesztelési tervek segítik, 
ezek elkészítése szükséges.

 A statikus verifikációs technikák 
hibadetektálás céljából vizsgálják és 
analizálják a programot.

Összefoglalás



47

Összefoglalás

 A hibák felderítésének nagyon hasznos módja  a 
programok vizsgálta.

 A vizsgálat során hibakeresés céljából a 
programkódot egy kis létszámú csoport 
szisztematikusan átvizsgálja.

 A statikus analízis eszközök esetleges 
programhibákat jelző anomáliákat keresnek a 
kódban.

 A Cleanroom fejlesztési eljárás elemei a 
inkrementális fejlesztés, statikus verifikáció és a 
statisztikus tesztelés.

Összefoglalás


