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Kérdések

 Mi a szoftver verifikáció és validáció, mi a különbség 
köztük?

 Mi a program-vizsgálati eljárás, mi a szerepe a 
verifikációban és validációban?

 Mi a statikus analízis, hogyan használható ez, mint 
verifikációs technika?

 Mi a Cleanroom szoftverfejlesztési eljárás?

Kérdések
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 Verifikáció: 
„Jó minőségű terméket fejlesztünk?”
(jól fejlesztünk?)

 A szoftver teljesítse a specifikációt.

 Validáció:
„A megfelelő terméket fejlesztjük?”
(jót fejlesztünk?)

 A szoftver azt csinálja, amit a felhasználó tényleg 
akar.

1. Bevezetés

1. Bevezetés
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 Az egész életciklusra jellemző.

• A V & V-t a szoftver fejlesztés minden lépésénél 
alkalmazni kell.

 Két fő cél:

• A rendszerbeli hibák felfedezése.

• Annak felmérése, hogy a rendszer hasznos-e 
és használható-e a felhasználási környezetben.

A V & V eljárás

1. Bevezetés
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A V & V célja

 A verifikáció és validáció a szoftver iránti 
bizalmi alapot teremt:

 A szoftver el tudja látni a feladatát.

 NEM azt jelenti, hogy teljesen hibamentes.

 Azt jelenti, hogy elég jó ahhoz, hogy ellássa 
feladatát.

 A feladat típusa határozza meg, milyen 
mértékű bizalom kell.

1. Bevezetés
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A bizalmi szint

 A rendszer céljától, a felhasználók 
elvárásaitól, valamint a piaci viszonyoktól 
függ.
• A szoftver célja

• A bizalmi szint függ attól, hogy mennyire kritikus a 
szoftver a szervezet számára.

• Felhasználó elvárások
• A felhasználóknak bizonyos szoftverekkel szemben 

nagyon alacsony elvárásaik vannak.

• Piaci környezet
• A gyors piacra dobás fontosabb lehet, mint a hibák 

megtalálása.

1. Bevezetés
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 Szoftvervizsgálatok. Problémák feltárása a 
rendszer statikus reprezentációjának 
analízise segítségével (statikus V & V). 
• Kiegészíthető eszköz-alapú dokumentum- és 

forráskód-analízissel.

 Szoftvertesztelés. Kísérletezés és a termék 
viselkedésének megfigyelése (dinamikus V & 
V)
• A rendszert teszt-adatokkal futtatva működés 

közben figyeljük a viselkedését.

Statikus és dinamikus V & V

1. Bevezetés
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Statikus és dinamikus V&V
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1. Bevezetés
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 A hibák jelenlétét és NEM hiányát jelezheti.

 Az egyetlen V & V technika nem-funkcionális 
követelmények ellenőrzésére, hiszen a 
szoftvert végre kell hajtani ahhoz, hogy 
lássuk, miként viselkedik.

 Statikus ellenőrzéssel együtt célszerű 
használni, hogy teljes V&V lefedettséget 
kapjunk. 

Szoftvertesztelés

1. Bevezetés
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 Hiányosságtesztelés (hibatesztelés)

• A tesztek rendszerhibák feltárására.

• A jó teszt feltárja a rendszerben lévő hibák 
jelenlétét: program és specifikáció közötti 
ellentmondás.

 Validációs tesztelés

• Célja annak bizonyítása, hogy a szoftver megfelel a 
megrendelő igényeinek.

• A jó teszt megmutatja, hogy a rendszer 
teljesítménye és megbízhatósága valós 
körülmények között is megfelelő-e.

A szoftvertesztelés típusai

1. Bevezetés
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 A hibatesztelés és a hibakeresés különböző 
eljárások.
• A hibatesztelés (V & V) feladata a programhibák 

jelenlétének feltárása.

• A hibakeresés ezen hibák lokalizálásával és 
javításával foglalkozik.

 A hibák megtalálása érdekében a hibakeresés 
során a program viselkedéséről hipotéziseket 
állítunk fel, amiket ellenőrzünk.
• Pl. túlcímzések, nullával osztás, végtelen ciklusok

Hibatesztelés és hibakeresés

1. Bevezetés
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A hibakeresés folyamata
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1. Bevezetés
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 A tesztelési és vizsgálati eljárások sikere érdekében 
körültekintő tervezésre van szükség.

 A tervezést már a fejlesztés korai fázisában el kell 
kezdeni.

 A terv határozza meg a statikus vizsgálat és a 
tesztelés helyes egyensúlyát.

 A V & V tervezése a tesztelési eljárás irányelveit 
fogalmazza meg, nem kell a termék tesztelését itt 
leírni.

2. A V & V tervezése

2. A V&V tervezése
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A fejlesztés V-modellje
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2. A V&V tervezése
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A szoftvertesztelési terv struktúrája

 A tesztelő eljárás.

 Követelmények követhetősége.

 Tesztelt elemek.

 A tesztelés menetrendje.

 A tesztek rögzítésének eljárása.

 Hardver és szoftver szükségletek.

 Kényszerek.

2. A V&V tervezése
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A szoftvertesztelési terv

A tesztelő eljárás.
A tesztelési eljárás főbb fázisainak leírása.

Követelmények követhetősége.
A teszteket úgy kell megtervezni, hogy minden követelményt külön 
lehessen tesztelni. 

Tesztelt elemek.
A fejlesztési eljárás azon elemeit specifikáljuk, amelyeket tesztelni kell.

A tesztelés menetrendje.
A tesztelés menetrendje a szükséges erőforrások foglalásával. 
Természetesen szorosan kapcsolódik a teljes projekt ütemezéséhez.

A tesztek rögzítésének eljárása.
A teszteket nemcsak futtatni kell, hanem az eredményeket 
szisztematikusan rögzíteni is. A tesztelési eljárásnak felülvizsgálhatónak 
kell lenni.

Hardver és szoftver szükségletek.
A szükséges szoftver eszközök listája a becsült hardver használattal 
együtt.

Kényszerek.
A tesztelési eljárást befolyásoló kényszerek, pl. munkaerő hiány.

2. A V&V tervezése
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3. Szoftvervizsgálatok

 Emberek vizsgálják a forrás valamilyen 
reprezentációját anomáliák és hibák után 
kutatva.

 A vizsgálathoz nem kell a rendszert futtatni, így 
implementáció előtt  is megtehető.

 A rendszer bármely reprezentációja vizsgálható: 
követelmények, terv, konfigurációs adatok, teszt 
adatok, stb.

 A programhibák feltárásának hatékony eszköze.

3. Szofver vizsgálatok
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Szoftvervizsgálatok

 A reprezentáció felülvizsgálatának formális 
módszere

 Célja kizárólag a hibák jelenlétének jelzése, 
(nem pedig javítása).

 A hibák lehetnek (pl.)

• logikai hibák;

• anomáliák a kódban, amik hibás állapotot 
jelezhetnek (pl. nem inicializált változó);

• egyes szabványok nem teljesítése.

3. Szofver vizsgálatok
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A szoftvervizsgálat típusai

 Dokumentum átvilágítás

• Követelmények
• Felhasználói

• Rendszer

• Tervek
• Rendszer, alrendszer, modul

• Teszt

 Program (forráskód) átvilágítás

 Automatizált forráskód elemzés

 Formális verifikáció

3. Szofver vizsgálatok
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A vizsgálat előfeltételei

 Precíz, teljes reprezentáció.

 A csoport tagjainak ismerni kell a szervezet 
működési szabályait.

 Szintaktikailag helyes kód, vagy valamilyen más 
rendszer-reprezentáció.

 Egy hiba-ellenőrző listát kell készíteni.

 A menedzsmentnek el kell fogadni, hogy a szoftver 
vizsgálat növeli a költségeket.

 A menedzsment ne használja a szoftver vizsgálatot 
a dolgozók értékelésére (pl. ki hibázott).

3. Szofver vizsgálatok
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A vizsgálat hatékonysága

 Egyetlen vizsgálat több hibát is feltárhat. A 
tesztelés során egy hiba elfedhet más 
hibákat, így ott többszöri végrehajtás kell.

 Az újrafelhasználás és a programozói 
tapasztalat miatt a felülvizsgálók 
valószínűleg találkoztak már a gyakran 
előforduló hibákkal.

3. Szofver vizsgálatok



23

SW vizsgálatok és SW tesztelés

 A vizsgálatok és a tesztelés egymást kiegészítő 
verifikációs technikák.

 A V & V eljárás alatt mindkettő használata 
ajánlatos.

 A vizsgálat ellenőrzi, hogy a specifikációnak 
megfelel-e, de azt nem, hogy a valós 
felhasználói igényeket kielégíti-e.

 A vizsgálatok nem tudják ellenőrizni a nem-
funkcionális jellemzőket, pl. teljesítmény, 
használhatóság, stb.

3. Szofver vizsgálatok
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A vizsgálat folyamata
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3. Szofver vizsgálatok
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A vizsgálat folyamata

 A rendszer ismertetése a felülvizsgáló csoport 
számára.

 A csoport tagjai megkapják a kódot és az egyéb 
kapcsolódó dokumentumokat.

 A vizsgálat megtörténik, a felfedezett hibákat 
feljegyzik.

 A felfedezett hibák javítása érdekében a szükséges 
módosítások elvégzése.

 Szükség esetén újabb vizsgálat.

3. Szofver vizsgálatok
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Szerepek a vizsgálat során

Szerző vagy tulajdonos A programozó vagy tervező, aki a program vagy 
egyéb dokumentum létrehozásáért felelős. Az ő 
felelőssége a vizsgálat során feltárt hibák javítása 
is.  

Vizsgáló Hibák, hiányosságok, inkonzisztenciák keresése a 
programokban és dokumentációban. Esetleg a 
vizsgáló bizottság feladatkörén kívül álló 
kérdéseket is felvethet. 

Felolvasó  A vizsgálati ülésen bemutatja a kódot vagy 
dokumentumot.  

Írnok A vizsgálati ülés eredményeit rögzíti. 

Elnök vagy moderátor  Menedzseli és segíti a vizsgálat menetét. Az 
eredményeket a fő moderátornak jelenti. 

Fő moderátor A vizsgálati folyamat javításáért, a hiba-ellenőrző 
lista frissítéséért, eszközökért, stb. felelős. 

3. Szofver vizsgálatok
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Ellenőrző listák

 A gyakori hibákat tartalmazó ellenőrző lista 
használandó a vizsgálat levezetésére.

 A hiba-ellenőrző listák programnyelv-
specifikusak és az adott programnyelv 
karakterisztikus hibáit tartalmazzák.

 Általában minél gyengébb a típus-ellenőrzés, 
annál hosszabb az ellenőrző lista.

 Példák: inicializálás, konstansok elnevezése, 
kilépés hurokból, tömbhatár túllépés, stb.

3. Szofver vizsgálatok
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Ellenőrző lista 1

Adathibák Minden változó inicializálva van, mielőtt használnánk? 
Az összes konstansnak van neve? 
A tömbök felső indexe a tömb méretével egyenlő vagy 
ennél eggyel kisebb kell legyen? 
Karakter-tömbök használata esetén a delimiter 
egyértelműen definiálva van? 
Előfordulhat-e buffer overflow?  

Vezérlési hibák Minden feltételes utasításra: helyes a feltétel? 
Minden ciklus biztosan befejeződik? 
Az utasítás-blokkokat helyesen zárójeleztük? 
Case utasításnál minden lehetőséget kimerítettünk? 
Ha minden case utasítás után break kell, akkor ezek jelen 
vannak? 

I/O hibák Minden bemenő változót használunk? 
Minden kimeneti változónak adunk értéket visszatérés 
előtt? 
Váratlan bementi adatok okozhatnak-e hibát? 

3. Szofver vizsgálatok
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Ellenőrző lista 2

Interfész hibák Minden függvény- és metódus-hívásnak megfelelő számú 
paramétere van? 
A paraméter-típusok megfelelők?  
A paraméterek sorrendje megfelelő?  
Ha több komponens osztott memóriát használ, akkor  
ugyanolyan struktúrájú memória-modellt használnak? 

Tárolás-
menedzsment 
hibák 

Láncolt szerkezetek módosítása esetén minden mutató 
megfelelően módosítva van? 
Dinamikus memóriahasználat esetén helyes-e az allokáció? 
A nem használt memória explicit módon fel van-e 
szabadítva? 

Kivétel-kezelési 
hibák 

Minden lehetséges hibalehetőség figyelembe lett véve? 

3. Szofver vizsgálatok
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A vizsgálat sebessége

 500 utasítás/óra az áttekintés során.

 125 forrás utasítás/óra az egyéni előkészületek 
alatt.

 90-125 utasítás/óra vizsgálható az ülésen.

 A vizsgálat drága!

 Pl.: 500 sor megvizsgálása kb. 40 ember óra 
igényű, ami kb. 500 eFt.

 Így is olcsóbb lehet, mint a komponens 
tesztelés.

3. Szofver vizsgálatok
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4. Automatizált statikus analízis

 A statikus analizátorok a forrás kódok 
feldolgozására szolgáló szoftver eszközök.

 A program szövegének elemzésével 
potenciális hibalehetőségek felfedezésére 
szolgálnak, amelyeket a V & V csoporttal 
tudatnak.

 Hasznos segédeszközök (kiegészítők) a 
vizsgálathoz, de nem helyettesítik a 
vizsgálatot.

4. Automatizált statikus analízis
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Statikus analízis ellenőrző lista

Hiba-osztály Statikus analízis vizsgálat

Adat-hiba Változók inicializálása használatuk előtt
Deklarált, de nem használt változó
Két értékadás közben nem használt változó
Lehetséges tömbhatár-túllépés
Nem deklarált változók

Vezérlési hiba Nem elérhető kódrészlet
Ugrás hurokba

I/O hiba Kimeneti változónak két kimenet nincs 
értékadása

Interfész hiba Paraméter típus konfliktus
Paraméterek száma nem megfelelő
Nem használt függvény-értékek
Nem hívott függvények és eljárások

Tárolás-menedzsment hiba Mutató értékadás hiánya
Mutató aritmetika

4. Automatizált statikus analízis



33

A statikus analízis lépései

 Vezérlés analízis. Hurkok többszörös 
belépési vagy kilépési pontokkal, nem 
elérhető kód, stb.

 Adathasználat analízis. Nem inicializált 
változók, többször írt változók közbülső 
értékadás nélkül, deklarált, de nem használt 
változók, stb.

 Interfész analízis. Konzisztens eljárás-
deklaráció és használat.

4. Automatizált statikus analízis
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A statikus analízis lépései

 Információ-folyam analízis. A kimenő 
változók függőségeinek feltárása. 
Önmagában nem tud anomáliákat detektálni, 
de kijelöl kódrészleteket a vizsgálat céljára.

 Útvonal analízis. Útvonalakat keres a 
program végrehajtása során és felsorolja a 
végrehajtott utasításokat. Hasznos lehet a 
vizsgálat során.

!!! Az utolsó két lépés rengeteg információt 
generál, óvatosan használandók !!!

4. Automatizált statikus analízis
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LINT statikus analízis

138% more lint_ex.c 
#include <stdio.h> 
printarray (Anarray) 
 int Anarray; 
{   printf(“%d”,Anarray);  } 
 
main () 
{ 
 int Anarray[5]; int i; char c; 
 printarray (Anarray, i, c); 
 printarray (Anarray) ; 
} 
 
139% cc lint_ex.c 
140% lint lint_ex.c 
 
lint_ex.c(10): warning: c may be used before set 
lint_ex.c(10): warning: i may be used before set 
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10) 
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10) 
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11) 
printf returns value which is always ignored  

 

4. Automatizált statikus analízis
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A statikus analízis felhasználása

 Nagyon hasznos olyan nyelveknél, ahol a 
típusellenőrzés gyenge és így a fordító sok 
hibát nem tud észlelni (pl. C).

 Kevésbé hasznos erős típusellenőrzéssel 
ellátott nyelvek esetén, ahol sok hiba fordítás 
közben kiderül (pl. Java).

4. Automatizált statikus analízis
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A verifikáció és formális módszerek

 Formális módszerek alkalmazhatók, ha a 
rendszer matematikai modellje adott.

 Ez az alapvető statikus analízis technika.

 A specifikáció matematikai analízise, 
formális indoklás: a program megfelel a 
matematikai specifikációnak.

4. Automatizált statikus analízis
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Formális módszerek előnyei

 A matematikai specifikáció elkészítéséhez a 
követelmények részletes elemzése 
szükséges, ami valószínűleg felfedi a 
hibákat.

 Implementációs hibákat még a tesztelés előtt 
fel tud fedni a program és a specifikáció 
együttes vizsgálatával. 

4. Automatizált statikus analízis
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A formális módszerek hátrányai

 Speciális jelölésrendszer használata 
szükséges, amelyet az alkalmazási 
környezet szakértői nem értenek.

 A specifikáció kidolgozása nagyon drága. 
Még drágább bizonyítani, hogy a program 
megfelel a specifikációnak.

 Más V & V módszerek alkalmazásával is el 
lehet jutni ugyanolyan bizalmi szintre.

4. Automatizált statikus analízis
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 A név a félvezető-gyártásban használt 
'Cleanroom‘ eljárásból ered. Filozófia: a 
hibák elkerülése, nem a hibák eltávolítása.

 A következő elveken alapul:

• Inkrementális fejlesztés;

• Formális specifikáció;

• Statikus verifikáció helyességbizonyítással;

• Statisztikus tesztelés a program 
megbízhatóságának meghatározásához.

5. A Cleanroom szoftverfejlesztés

5. A Cleanroom szoftverfejlesztés
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A Cleanroom eljárás
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A Cleanroom eljárás jellemzői

 Formális specifikáció állapot-átmeneti 
modellekkel.

 Inkrementális programfejlesztés a 
megrendelő prioritásai szerint.

 Strukturált programozás – korlátozott 
vezérlési és absztrakciós eszközök 
alkalmazása.

 Statikus verifikáció szigorú vizsgálatokkal.

 Statisztikus tesztelés (működési profil 
alapján)

5. A Cleanroom szoftverfejlesztés
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Formális specifikáció és vizsgálatok

 Az állapotgép egy rendszerspecifikáció. Az 
ellenőrző eljárás ezzel a modellel veti össze a 
programot.

 A programozási modell olyan, hogy a modell és 
a rendszer közötti kapcsolat világos.

 Matematikai állítások növelik a vizsgálati 
eljárás bizalmi szintjét. Például:

• Biztonságos állapot mindig elérhető

• Minden állapot elhagyható

• Minden állapot véges ideig áll fenn

5. A Cleanroom szoftverfejlesztés
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 Specifikációs csoport. A rendszer-
specifikáció kidolgozásáért és 
karbantartásáért felel.

 Fejlesztési csoport. A szoftver fejlesztéséért 
és verifikálásáért felelős. A szoftvert ebben a 
fázisban nem futtatják, még le sem fordítják.

 Tanúsító csoport. A fejlesztés után a 
szoftveren végrehajtandó statisztikus tesztek 
kidolgozásáért felelős. 

A Cleanroom eljárásban részt vevő 
csoportok

5. A Cleanroom szoftverfejlesztés
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 A Cleanroom eljárással készült rendszerekben 
nagyon kevés hiba van. 

 Nem drágább, mint más módszerek.

 Kevesebb hiba, mint a „hagyományos” fejlesztési 
eljárásoknál.

 Ennek ellenére nem használt széles körben. Kérdés: 
hogyan lehet olyan környezetbe átültetni, hol 
kevésbé képzett és motivált szoftvermérnökök 
dolgoznak?

A Cleanroom eljárás értékelése

5. A Cleanroom szoftverfejlesztés
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Összefoglalás 

 A verifikáció és validáció nem ugyanazt 
jelenti.  A verifikáció a specifikáció 
teljesítését mutatja, a validáció pedig azt, 
hogy a program kielégíti a felhasználó 
igényeit.

 A tesztelési eljárást tesztelési tervek segítik, 
ezek elkészítése szükséges.

 A statikus verifikációs technikák 
hibadetektálás céljából vizsgálják és 
analizálják a programot.

Összefoglalás
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Összefoglalás

 A hibák felderítésének nagyon hasznos módja  a 
programok vizsgálta.

 A vizsgálat során hibakeresés céljából a 
programkódot egy kis létszámú csoport 
szisztematikusan átvizsgálja.

 A statikus analízis eszközök esetleges 
programhibákat jelző anomáliákat keresnek a 
kódban.

 A Cleanroom fejlesztési eljárás elemei a 
inkrementális fejlesztés, statikus verifikáció és a 
statisztikus tesztelés.

Összefoglalás


