
1

23.
Szoftver tesztelés

2

Kérdések

 Mi a különbség a validációs tesztelés és a
hibatesztelés között?

 Mik a rendszer- és komponenstesztelés
alapelvei?

 Milyen stratégiákat alkalmazhatunk
tesztgenerálás céljára?

 Mik az automatizált tesztelés eszközeinek
alapvető jellemzői?

Kérdések

3

Tartalom

1. Bevezetés

2. Rendszertesztelés

3. Komponens tesztelés

4. Teszt esetek tervezése

5. Automatikus tesztelés

Tartalom

4

1. Bevezetés

 Komponens tesztelés
• Programkomponensek egyedi tesztelése;

• Általában a komponens fejlesztőjének feladata
(kivétel a kritikus rendszerek);

• A tesztek a fejlesztő tapasztalatán alapulnak.

 Rendszertesztelés
• Komponensek rendszerbe vagy alrendszerbe

integrált csoportjainak tesztelése;

• Egy független fejlesztő csoport feladata;

• A tesztek a rendszerspecifikáción alapulnak.

1. Bevezetés

5

A tesztelés fázisai

Component

testing
System

testing

Software developer Independent testing team

Komponens
tesztelés

Rendszer
tesztelés

Szoftverfejlesztő Független tesztelő csoport

1. Bevezetés

6

Hibatesztelés

 A hibatesztelés célja a programhibák
felfedezése

 A sikeres hibateszt a programot hibás
viselkedésre bírja

 A teszt csak a hibák jelenlétét mutatja, de
nem képes a hibák hiányát jelezni.

1. Bevezetés

7

A tesztelési eljárások célja

 Validációs tesztelés
• A fejlesztők és megrendelő számára annak

demonstrálása, hogy a szoftver teljesíti a
követelményeket;

• A sikeres tesz eredménye, hogy a rendszer a tervek
szerint működik.

 Hibatesztelés
• A rendszerben hibák keresése: hibás viselkedés, vagy a

specifikáció nem teljesítése;

• A sikeres teszt a rendszert hibás működésre kényszeríti,
így a rendszer hibájára mutat rá.

1. Bevezetés

8

A szoftvertesztelés folyamata

Design test
cases

Prepar e test
data

Run pr ogram
with test da ta

Compar e results
to test cases

Test

cases

Test

data

Test

results

Test

repor ts
Teszt-
esetek

Teszt-
adatok

Teszt-
eredmény

Teszt-
riport

Teszt-esetek
tervezése

Teszt-adatok
tervezése

Futtatás
teszt-adatokkal

Eredmények
összehasonlítása
a teszt-esetekkel

1. Bevezetés

9

 Csak a kimerítő teszteléssel deríthető ki, hogy a
program hibamentes. De a kimerítő tesztelés
lehetetlen.

 A tesztelési vezérelvek definiálják a tesztek
kiválasztásának módját:
• A menükön keresztül elérhető valamennyi funkciót le kell

tesztelni;

• Az azonos menün keresztül elérhető funkciók
kombinációit tesztelni kell;

• Ahol felhasználói bevitel van, minden funkciót ellenőrizni
kell helyes és helytelen adatokkal.

Tesztelési vezérelvek

1. Bevezetés

10

2. Rendszertesztelés

 A komponensek rendszerbe vagy alrendszerbe
integrálásával foglalkozik.

 A megrendelőnek átadandó inkrementum
tesztelésével is foglalkozhat.

 Két fázis:
• Integrációs teszt – A tesztelők használhatják a rendszer

forráskódját. A rendszer a komponensek integrálása
folyamán teszteljük.

• Végteszt (release test) – A tesztelők az átadandó teljes
rendszert fekete dobozként tesztelik.

2. Rendszertesztelés

11

Integrációs tesztelés

 A rendszer komponensekből áll. A tesztelés
a komponensek interakciójából eredő
problémákkal foglalkozik.

 Felülről lefelé (top-down) integrálás
• A rendszer vázának felépítése, majd a

komponensek beépítése.

 Alulról felfelé (bottom-up) integrálás
• Az infrastruktúra komponensek integrálása,

majd a funkcionális komponensek hozzáadása.

 A hibalokalizálás megkönnyítése érdekében
a rendszereket inkrementálisan célszerű
integrálni.

2. Rendszertesztelés

12

Inkrementális integrálás-tesztelés

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence 1 Test sequence 2 Test sequence 31. teszt szekvencia 2. teszt szekvencia 3. teszt szekvencia

2. Rendszertesztelés

13

Tesztelési megfontolások

 Achitektúrális validáció
• A felülről lefelé integrálásos teszteléssel könnyebb a

rendszer architektúrájában levő hibák felfedezése.

 Rendszer demonstrációja
• A felülről lefelé integrálásos tesztelés a fejlesztés korai

szakaszában már lehetővé tesz korlátozott
demonstrációt.

 A teszt implementálása
• Gyakran könnyebb alulról felfelé integrálásos

teszteléssel.

 A teszt megfigyelése
• Mindkét megközelítéssel problematikus. Extra kódra lehet

szükség a teszt megfigyeléséhez.

2. Rendszertesztelés

14

Végtesztelés

 A rendszer egy terjesztésre szánt verziójának
(release) tesztelésének folyamata.

 Elsődleges célja a gyártó bizalmi szintjének
növelése abban, hogy a rendszer megfelel a
követelményeknek.

 A végteszt általában fekete doboz teszt (vagy
funkcionális teszt)
• Csak a specifikáción alapul;

• A tesztelők nem ismerik a rendszer implementációját.

2. Rendszertesztelés

15

Fekete doboz tesztelés

IeInput test da ta

OeOutput test r esults

System

Inputs causing

anomalous

beha viour

Outputs w hich r eveal
the pr esence of

defects

Bemeneti teszt adat

Hibás viselkedést
kiváltó bemenet

A hiba jelenlétét
kimutató kimenet

Rendszer

Kimeneti teszt eredmény

2. Rendszertesztelés

16

Tesztelési tanácsok

 Ötletek a tesztelőknek: hogyan érdemes
olyan teszteket választani, amelyek
kimutatják a rendszer hibáit.
• Olyan bemenetek választása, amelyek a

rendszert hibaüzenetek (az összes!)
generálására kényszerítik;

• Olyan bemenetek tervezése, ami puffer
túlcsorduláshoz vezethet;

• Ugyanazon bemenet vagy bemeneti sorozat
többszöri ismétlése;

• Érvénytelen kimenetek kikényszerítése;

• Túl nagy vagy túl kicsi számítási eredmények
kikényszerítése.

2. Rendszertesztelés

17

Szcenárió-alapú tesztelés

Egy diák Amerikai történelmet tanul és éppen dolgozatot ír a
polgárháborúról. Ehhez forrásokat keres különféle könyvtárakban. A
LIBSYS rendszerbe bejelentkezve a kereső szolgáltatást használja eredeti
dokumentumok keresésére. Talál is néhány forrást amerikai egyetemek
könyvtáraiban és le is tölt onnan néhány másolatot. Az egyik
dokumentumhoz azonban igazolásra van szüksége az egyetemétől, hogy
valóban hallgató és a letöltés nem szolgál kereskedelmi célokat. Az igazolás
kiállítását a LIBSYS rendszeren keresztül kéri. Ha az igazolást megkapja,
akkor a dokumentumot letöltik a könyvtár szerverére és kinyomtatják. A
diák egy e-mail üzenetet fog kapni, amelyben értesítik, hogy átveheti a
dokumentumot.

2. Rendszertesztelés

18

Rendszertesztek

A bejelentkezési mechanizmus tesztelése helyes és helytelen azonosítókkal:
annak ellenőrzése, hogy az érvényes azonosítókat elfogadja, az
érvényteleneket visszautasítja.

A keresés tesztelése különféle kereső kifejezésekkel ismert forrásokra:
ellenőrizhető, hogy a kereső valóban megtalálja-e a dokumentumokat.

A kijelzés tesztelése: a dokumentumokról szóló információ helyesen van-e
kijelezve?

A letöltéshez engedélyt kérő mechanizmus tesztelése.

Az e-mail-es értesítő rendszer tesztelése: elküldi-e a levelet a dokumentum

megérkezésekor.

2. Rendszertesztelés

19

Használati esetek

 Használati esetek (use cases) alapján
tesztek készíthetők. Segítenek a tesztelendő
operációk kiválasztásánál és a szükséges
teszt esetek megtervezésében.

 A kapcsolódó szekvencia-diagramból a teszt
számára a bemenetek és kimenetek
meghatározhatók.

2. Rendszertesztelés

20

Időjárási adat gyűjtése szekvencia
diagram

:CommsController

request (repor t)

acknowledge ()
repor t ()

summarise ()

reply (repor t)

acknowledge ()

send (repor t)

:WeatherStation :WeatherData

2. Rendszertesztelés

21

A teljesítmény tesztelése

 A végteszt egy része a rendszer eredő
tulajdonságainak tesztelése, pl. teljesítmény,
megbízhatóság.

 A teljesítmény tesztelése általában egy teszt-
sorozattal történik, ahol a terhelést
fokozatosan növeljük, amíg a rendszer
teljesítménye már elfogadhatatlanná válik.

2. Rendszertesztelés

22

Stressz tesztelés

 A rendszert a tervezett értéknél jobban terheljük. A
rendszer stresszelése gyakran fed fel hibákat.

 A stresszelés a hibás működés közbeni viselkedését
is teszteli. A rendszernek nem szabad
katasztrofálisan összeomlania. Teszteli az
elfogadhatatlan szolgáltatás-kiesést vagy
adatvesztést.

 A stressz teszt különösen fontos elosztott
rendszereknél, ahol a rendszer súlyosan
degradálódhat, ha a hálózat túlterhelődik.

2. Rendszertesztelés

23

3. Komponens tesztelés

 A komponens tesztelés az egyes komponensek
izolált tesztelésének folyamata.

 Hibatesztelő folyamat.

 Komponensek lehetnek:
• Egyedi függvények vagy objektumok metódusai;

• Objektum osztályok sok attribútummal és metódussal;

• Kompozit komponensek, amelyek szolgáltatásait
interfészeken keresztül lehet elérni.

3. Komponens tesztelés

24

Objektum osztályok tesztelése

 Egy osztály teljes tesztelése:

• Az objektumhoz tartozó valamennyi operáció
tesztelése;

• Az összes attribútum beállítása és lekérdezése;

• Az objektum valamennyi állapotának elérése.

 Az öröklés megnehezíti az objektum-osztály
tesztelését, mert a tesztelendő információ
nem lokalizált.

3. Komponens tesztelés

25

A meteorológiai állomás objektum
interfésze

identifier

repor tWeather ()
calibrate (instruments)
test ()
star tup (instruments)
shutdown (instruments)

WeatherStation

3. Komponens tesztelés

26

A meteorológiai állomás tesztelése

 Teszt eseteket kell definiálni a
metódusokhoz: reportWeather, calibrate,
test, startup, shutdown.

 Az állapotgép modell segítségével a
tesztelendő állapotváltozások sorozatának
kijelölése, majd az ezekhez tartozó
esemény-sorozat meghatározása.

 Példa:
• Waiting -> Calibrating -> Testing -> Transmitting

-> Waiting

3. Komponens tesztelés

27

A meteorológiai állomás állapot-
diagramja

transmission done

calibrate ()

test ()star tup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

repor tWeather ()

Shutdown Waiting Testing

Transmitting

Collecting

Summarising

Calibrating

3. Komponens tesztelés

28

 A cél az interfészek hibáinak, vagy az
interfészekről alkotott hibás feltételezésekből
eredő hibák felderítése.

 Nagyon fontos objektum-orientált fejlesztés
esetén, amikor is az objektumokat
interfészeikkel definiáljuk.

Interfész-tesztelés

3. Komponens tesztelés

29

Interfész-tesztelés

B

C

Test

cases

A

Teszt
esetek

3. Komponens tesztelés

30

Interfészek típusai

 Paraméter interfészek
• Adat átadása egyik eljárásból a másikba.

 Osztott memória interfészek
• Egy közös memóriarészt használ több eljárás vagy

függvény.

 Procedurális interfészek
• Egy alrendszer eljárásokat tartalmaz, amelyeket más

alrendszerek hívhatnak.

 Üzenettovábbításos interfészek
• Komponensek más komponensektől üzeneteken

keresztül szolgáltatást kérnek.

3. Komponens tesztelés

31

Interfész hibák

 Hibás interfész használat
• A hívó komponens egy másik komponenst akar használni,

de rosszul használja annak interfészét (pl. rossz
paraméter-sorrend).

 Interfész félreértelmezés
• A hívó komponens a hívott komponens viselkedéséről

téves feltételezésekkel él.

 Időzítési hibák
• A hívó és hívott komponensek más sebességgel

működnek és így előfordulhat elavult adatok használata.

3. Komponens tesztelés

32

Interfész tesztelési tanácsok

 A tesztet úgy kell megtervezni, hogy a hívott eljárás
paraméterei a tartomány határán legyenek.

 A mutató típusú paramétereket mindig tesztelni kell
null-pointerekkel is.

 A komponens hibás működését előidéző tesztek
tervezése.

 Üzenettovábbítással működő rendszerek stressz-
tesztelése.

 Osztott memóriás rendszerekben az aktivált
komponensek sorrendjének változtatása.

3. Komponens tesztelés

33

4. Teszt esetek tervezése

 A tesztelés során használt teszt esetek (bemenetek
és kimentek) tervezésével foglalkozik.

 A teszt esetek tervezésének célja hatékony tesztek
készítése validációs és hibatesztelés céljára.

 Tervezési módszerek:
• Követelmény-alapú tesztelés;

• Partíciós tesztelés;

• Strukturális tesztelés.

4. Teszt esetek tervezése

34

Követelmény-alapú tesztelés

 A követelmény-tervezés egyik alapelve, hogy
a követelmények tesztelhetők legyenek.

 A követelmény-alapú tesztelés egy
validációs tesztelési technika, ahol minden
egyes követelményhez kidolgozunk azt
ellenőrző teszteket.

4. Teszt esetek tervezése

35

LIBSYS követelmények

A felhasználó a teljes adatbázisban kereshet, vagy kiválaszthatja
ennek egy részhalmazát.

A rendszer biztosítja a tárolt dokumentumok megfelelő
megjelenítését.

Minden megrendelés egyéni azonosító (ORDER_ID) alapján
letölthető az előfizető tárhelyére.

4. Teszt esetek tervezése

36

LIBSYS tesztek

 Keresés olyan elemekre, amelyekről tudjuk, hogy jelen
vannak, valamint olyanokra, amelyek nincsenek. Az
elérhető adatbázisok száma legyen 1.

 Keresés olyan elemekre, amelyekről tudjuk, hogy jelen
vannak, valamint olyanokra, amelyek nincsenek. Az
elérhető adatbázisok száma legyen 2.

 Keresés olyan elemekre, amelyekről tudjuk, hogy jelen
vannak, valamint olyanokra, amelyek nincsenek. Az
elérhető adatbázisok száma legyen több, mint 2.

 Az elérhető adatbázisokból egy kiválasztása, abban keresés
olyan elemekre, amelyekről tudjuk, hogy jelen vannak,
valamint olyanokra, amelyek nincsenek.

 Az elérhető adatbázisokból több kiválasztása, azokban
keresés olyan elemekre, amelyekről tudjuk, hogy jelen
vannak, valamint olyanokra, amelyek nincsenek.

4. Teszt esetek tervezése

37

Partíciós tesztelés

 A ki- és bemeneti adatok gyakran különböző
osztályokba sorolhatók, ahol az osztályon
belüli elemek „hasonlóak”.

 Ezen osztályok mindegyike egy ekvivalencia
partíció, ahol a program ekvivalens módon
viselkedik az osztály minden elemére.

 Teszt esetek minden partícióból
választandók.

4. Teszt esetek tervezése

38

Ekvivalencia partíciók

System

Outputs

Invalid inputs Valid inputs

Rendszer

Érvénytelen
bemenetek

Kimenetek

Érvényes
bemenetek

4. Teszt esetek tervezése

39

Ekvivalencia partíciók

Betw een 1 0000 and 99999Less than 1 0000 More than 99999

9999

10000 50000
100000

99999

Input v alues

Betw een 4 and 1 0Less than 4 More than 1 0

3

4 7

1 1

1 0

Number of input v alues

Kisebb, mint 4 4 és 10 között Több, mint 10

10000 és 99999 között Több, mint 99999Kisebb, mint 10000

Bemeneti értékek

A bemenetek száma

4. Teszt esetek tervezése

40

Példa: Keresési algoritmus
specifikációja

procedure Search (Key : ELEM ; T: SEQ of ELEM;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- a sorozatnak legalább egy eleme van
T’FIRST <= T’LAST

Post-condition
-- a keresett elemet megtaláltuk az L-ik helyen
(Found and T (L) = Key)

or
-- az keresett elem nincs a tömbben
(not Found and
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

4. Teszt esetek tervezése

41

 Olyan bemenetek, amelyekre igaz az
előfeltétel (pre-condition).

 Olyan bemenetek, amelyekre nem igaz az
előfeltétel.

 Olyan bemenetek, amelyekre a keresett
elem megtalálható a tömbben.

 Olyan bemenetek, amelyekre a keresett
elem nincs a tömbben.

Keresési algoritmus – bemeneti
partíciók

4. Teszt esetek tervezése

42

Tesztelési tanácsok (sorozatok)

 Szoftver tesztelése olyan sorozattal, aminek
egy eleme van.

 A különféle tesztekben más és más méretű
sorozatok használata

 A tesztekben az első, utolsó és középső
elem felhasználása.

 Tesztelés olyan sorozattal, aminek nulla
eleme van.

4. Teszt esetek tervezése

43

Keresési algoritmus – bemeneti
partíciók

Sorozat Elem

Single value In sequence

Single value Not in sequence

More than 1 value First element in sequence

More than 1 value Last element in sequence

More than 1 value Middle element in sequence

More than 1 value Not in sequence

Bemenő sorozat (T) Keresett érték (Key) Kimenet (Found, L)

17 17 true, 1

17 0 false, ??

17, 29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 7

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 false, ??

Sorozat Elem

Egy érték A sorozatban van

Egy érték Nincs a sorozatban

Több, mint egy érték A sorozat első eleme

Több, mint egy érték A sorozat utolsó eleme

Több, mint egy érték A sorozat középső eleme

Több, mint egy érték Nincs a sorozatban

4. Teszt esetek tervezése

44

 „Fehér doboz” tesztelésnek is nevezik.

 Teszt esetek a program struktúrája alapján. A
program ismerete alapján újabb teszt esetek
azonosítása.

 A cél valamennyi utasítás (de nem minden
végrehajtási út kombináció) végrehajtása.

Strukturális tesztelés

4. Teszt esetek tervezése

45

Strukturális tesztelés

Component
code

Test
outputs

Test da ta

DerivesTests

Teszt adatok

Komponens
kód

Származtat

Teszt
kimenetek

Tesztel

4. Teszt esetek tervezése

46

Bináris keresés – ekvivalencia partíciók

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundariesEkvivalencia osztályok határai

Középpont

Elemek < középpont Elemek > középpont

4. Teszt esetek tervezése

47

 Előfeltételek kielégítve, keresett elem a tömbben.

 Előfeltételek kielégítve, keresett elem nincs a
tömbben.

 Előfeltételek nincsenek kielégítve, keresett elem a
tömbben.

 Előfeltételek nincsenek kielégítve, keresett elem
nincs a tömbben.

 A bemeneti tömbnek egyetlen eleme van.

 A bemeneti tömbnek páros számú eleme van.

 A bemeneti tömbnek páratlan számú eleme van.

Bináris keresés – ekvivalencia partíciók

4. Teszt esetek tervezése

48

Bináris keresés – teszt esetek

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

4. Teszt esetek tervezése

49

Végrehajtási út tesztelés

 A végrehajtási út tesztelés célja, hogy a
tesztek minden végrehajtási utat legalább
egyszer végrehajtanak.

 A kiinduló pont a program végrehajtási
gráfja, ahol a csomópontok a program
döntéseket, az élek pedig a vezérlés
menetét jelképezik.

 A feltételes utasítások tehát csomópontok
lesznek.

4. Teszt esetek tervezése

50

A bináris keresés végrehajtási gráfja

elemArray [mid] != key

elemArray [mid] > key elemArray [mid] < key

1

2

3

4

5

6

7

8

9

14 10

11

12 13

bottom > top while bottom <= topbottom > top

elemArray
[mid] = key

4. Teszt esetek tervezése

51

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14

 1, 2, 3, 4, 5, 14

 1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …

 1, 2, 3, 4, 5, 6, 7, 11, 13, 5,

 Olyan teszteket kell generálni, hogy ezen
útvonalak mindegyike végre legyen hajtva.

 Egy dinamikus program analizátor
használatával ellenőrizhető, hogy minden út
végre lett-e hajtva.

Független végrehajtási utak

4. Teszt esetek tervezése

52

5. Automatikus tesztelés

 A tesztelés nagyon drága fejlesztési fázis. A
tesztelési munkapadok számos eszközt
tartalmaznak, mellyel a tesztelési idő és költség
redukálható.

 Egyes rendszerek (pl. JUnit) támogatják a tesztek
automatikus végrehajtását.

 A legtöbb tesztelési munkapad nyitott rendszer,
hiszen a tesztelési igények a szervezettől függenek.

 Ezeket időnként nehéz integrálni a zárt tervezési és
analízis munkapadokkal.

5. Automatikus tesztelés

53

Egy tesztelési munkapad

A tesztelt
program

Fájl
összehasonlító

Teszt
menedzser

Teszt
adatok

Orákulum

Teszt adat
generátor

Specifikáció

Forrás-
kód

Dinamikus
analizátor

Végrehajtási
riport

Szimulátor

Teszt
eredmények

Teszt
előrejelzések

Riport
generátor

Riport a tesztek
eredményeiről

5. Automatikus tesztelés

54

A tesztelési munkapadok adaptálása

 A felhasználói interfész szimulátorokhoz
szkriptek, teszt-adat generátorokhoz minták
fejleszthetők.

 A kimeneti értékek manuálisan előállíthatók
összehasonlítás céljából.

 Speciális fájl-összehasonlítók fejleszthetők.

5. Automatikus tesztelés

55

Összefoglalás

 A tesztelés felfedheti hibák jelenlétét a rendszerben,
de nem tudja bizonyítani, hogy nem maradt több
hiba.

 A komponensek fejlesztő felelősek a komponens
tesztelésért, a rendszertesztelés egy független
csoport feladata.

 Az integrációs tesztelés a rendszer növekményeinek
tesztje, a végteszt pedig a megrendelőnek átadni
kívánt rendszer tesztelésével foglalkozik.

 A hibatesztelés tervezéséhez mind a tapasztalat,
mind ökölszabályok használhatók.

Összefoglalás

56

Összefoglalás

 Az interfész tesztelés feladata a kompozit
komponensek interfészeiben levő hibák feltárása.

 A tesztek kidolgozásának egy módja az ekvivalencia
partíciók kialakítása: a partíció olyan, hogy a benne
lévő összes eset ugyanúgy viselkedik.

 A strukturális analízis a program analíziséből
teszteket generál.

 Az automatikus tesztelés a tesztelési eljárást
szoftver eszközökkel támogatva csökkenti a
tesztelés költségeit.

Összefoglalás

